FileFormat 3.0 ## DESCRIPTION: ############################################################### #- This is a 3-category classification problem adapted from Fisher's #- prot data set. There are 4 predictive measurements made on each flower. #- The third category (Species3) is linearly separable from the other two #- (and among these, only cases 17, 66, and 79 are not linearly separable). #- We've added a 5th predictor, Zrandom, which is a Gaussian noise variable #- with mean 0 and units of standard deviation. # NP FILE SETTINGS ResultsFile prot.res # ReadWeightsFile prot.wts SaveWeightsFile prot.wts SaveTrainPrdFile prot.ptr # SaveTrainImputFile prot.itr # SaveTestImputFile prot.its # SaveTestPrdFile prot.pts # DATA FILE SETTINGS ReadTrainFile prot.trn # ReadTestFile prot.tst NHeaders 1 IDColumn YES StandardizeInputs 1 SaveStandWts NO ImputeMissing median InputColumns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 OutputColumns 22 23 24 NVars 24 ShuffleData YES # REPORTING SETTINGS DescribeVars YES MinCasesPerBin 25 NBoots 0 NEffectBoots 0 CalccIndex YES ScoreThreshold 0.5 OutputStatVars 0 # CONNECT CALLS Connect 1 21 22 24 Connect 22 24 25 27 # CONFIGURATION SETTINGS Ninputs 21 Nhidden 3 Noutputs 3 kNN 0 1ofN NO HiddenUnitType 1 OutputUnitType 3 WeightRange 0.001 # TRAINING SETTINGS TrainCriterion 3 BiasPenalty NO WeightDecay -0.001 OptimizeMethod 1 SigmoidPrimeOffset 0 QPMaxFactor 1.75 QPModeSwitchThreshold 0 Stochastic NO LearnRate 0.01 SplitLearnRate NO Momentum 0.0 # BEST-BY-HOLDOUT SETTINGS PercentHoldout 50 AutoTrain YES MinEpochs 50 BeyondBestEpoch 1.5 NSplits 10 SepBootXVal YES # AUTOMATIC RELEVANCE DETERMINATION SETTINGS UseARD NO WhenARD auto ARDTolerance 0.05 ARDFreq 25 GroupSelection Input BiasRelevance NO ARDFactor 1