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During the last two decades a large number of computational methods have been developed for predicting
transmembrane protein topology. Current predictors rely on topogenic signals in the protein sequence, such as
the distribution of positively charged residues in extra-membrane loops and the existence of N-terminal signals.
However, phosphorylation and glycosylation are post-translational modifications (PTMs) that occur in a
compartment-specific manner and therefore the presence of a phosphorylation or glycosylation site in a
transmembrane protein provides topological information. We examine the combination of phosphorylation
and glycosylation site prediction with transmembrane protein topology prediction. We report the development
of a HiddenMarkovModel basedmethod, capable of predicting the topology of transmembrane proteins and the
existence of kinase specific phosphorylation and N/O-linked glycosylation sites along the protein sequence.
Ourmethod integrates a novel feature in transmembrane protein topology prediction, which results in improved
performance for topology prediction and reliable prediction of phosphorylation and glycosylation sites.
The method is freely available at http://bioinformatics.biol.uoa.gr/HMMpTM.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Transmembrane proteins constitute ~20 to 30% of fully sequenced
proteomes and they are an important class of proteins, since they are
crucial for awide variety of cellular functions [1]. In order to understand
their function we must acquire knowledge about their structure and
topology in relation to the membrane. However, obtaining crystals of
transmembrane proteins suitable for crystallographic studies is difficult
and transmembrane proteins represent less than 2% of the structures in
the Protein Data Bank [2]. Therefore, during the last two decades a large
number of computational methods have been developed in order to
predict the topology of transmembrane proteins [3]. By topology, we
refer to the knowledge of the number and the exact localization of
transmembrane segments, as well as their orientation with respect to
the lipid bilayer. The first predictionmethodsmade use of hydrophobic-
ity scales in order to predict the location of transmembrane segments
along the protein sequence [4]. Later, the positive inside rule was used
for the prediction of the overall topology of a transmembrane protein
by discriminating the regions facing the two sides of the membrane
[5,6]. The evolution of transmembrane topology predictionmethods in-
volved the use of several algorithmic techniques including Statistical
Analyses [7,8], Artificial Neural Networks (ANNs) [9,10], Hidden
Markov Models (HMMs) [11–15], Support Vector Machines (SVMs)
[16], Dynamic Bayesian Networks (DBNs) [17] and ensemble methods
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(e.g. Hidden Neural Networks, HNNs) [18,19]. Hidden Markov Models
have been shown to outperform other techniques in topology predic-
tion and are widely used [15,20,21]. In addition, there are a number of
prediction methods (meta-predictors) that combine the results of sev-
eral individual methods and produce a consensus prediction [22–25].

Transmembrane protein topology prediction methods predict the
potential topology of a transmembrane protein from its protein
sequence. In order to achieve this task, they use information ‘hidden’
in the protein sequence such as hydrophobicity, the distribution of
charged residues [26], amino acid preferences, the existence of signal
peptides [13,17,19,26–28] and evolutionary information derived from
multiple sequence alignments [9,15,29–31]. Moreover, the use of do-
main assignments has been reported to be of benefit in topology predic-
tion [32]. During the last few years ab initio topology prediction has
been shown to be an attainable goal since it yields comparable perfor-
mance [33]. Importantly, several methods developed during the last
few years [1,13,14,18,21,24,33] allow the incorporation of topological
information derived from biochemical studies (constrained prediction),
which results in improved topology prediction performance. Such
biochemical methods include gene fusion, using enzymes such as alka-
line phosphatase, β-galactosidase, β-lactamase and various fluorescent
proteins, detection of post-translational modifications such as glycosyl-
ation, phosphorylation and biotinylation, cysteine-scanning mutagene-
sis, proteolysis methods and epitope mapping techniques [34].

Phosphorylation and glycosylation are the most widespread
post-translational modifications in eukaryotes [35,36] and occur
in a compartment-specific manner in the cell. In eukaryotic cells,
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glycosylation activity is found in the lumen of the endoplasmic
reticulum (ER) and it is accomplished by the enzyme oligosaccharyl
transferase (OST), which adds oligosaccharides to the amino group of
Asparagine (Asn) residues of the consensus sequence Asn-X-Thr/Ser
(N-linked glycosylation) [37]. It has been shown that the presence of
Proline between Asn and Ser/Thr inhibits N-glycosylation [38] and
about 50% of the sites that have a Proline C-terminal to Ser/Thr are
not glycosylated [39]. In O-linked glycosylation the glycans are attached
to either Serine (Ser) or Threonine (Thr) residues. In transmembrane
proteins, glycosylation sites occur at parts of proteins facing the extra-
cellular space and are located to a minimum distance away from the
membrane surface [40]. It has been shown that, in some cases, glycosyl-
ation occurs only when the acceptor site (Asn residue) is located a
minimum of 12 residues upstream or 14 residues downstream of a
transmembrane segment (‘12 + 14 rule’) [40–42]. Therefore, in
multi-spanning transmembrane proteins, glycosylated extracellular
loops have a minimum length of approximately 30 residues [43].
These constraints are used to map the ends of transmembrane seg-
ments using N-glycosylation scanning mutagenesis [42,44].

Protein phosphorylation is the most important and well-studied
post-translational modification in eukaryotes and is involved in the
regulation of several cellular processes such as cell growth and differen-
tiation, signal transduction and apoptosis [45–48]. The addition of a
phosphate group usually occurs in Serine (Ser), Threonine (Thr),
Tyrosine (Tyr) and Histidine (His) residues in eukaryotic proteins and
approximately 30–50% of proteins are supposed to be phosphorylated
at some point [49]. In transmembrane proteins, phosphorylation sites
are located at the cytoplasmic regions. Therefore, both the existence of
a phosphorylation or a glycosylation site along the sequence of a trans-
membrane protein provides valuable information about the orientation
of the modified region with respect to the membrane [34].

However, phosphorylation and glycosylation prediction methods
[50–52] predict modified sites along the whole sequence of a trans-
membrane protein, failing to distinguish between transmembrane seg-
ments, cytoplasmic regions and extracellular regions. One approach is
to use a topology prediction algorithm and then filter phosphorylation
or glycosylation site prediction results according to the predicted topol-
ogy [53]. Another combined prediction approach is to use first a phos-
phorylation or glycosylation prediction method and then use the
predicted sites as constraints to topology prediction. We compare
these different approaches and discuss advantages and disadvantages
of combining the two prediction problems.

We have designed a Hidden Markov Model with a novel architec-
ture, which combines in a single model, topology prediction and
phosphorylation and glycosylation site prediction. Finally, we use
this model for the development of a novel computational method
(HMM based) capable of predicting the topology of a transmem-
brane protein and the existence of kinase specific phosphorylation
sites as well as N-linked and O-linked glycosylation sites. We show
that the probability of the existence of a phosphorylation or glycosyl-
ation pattern along the protein sequence can be used by prediction
algorithms in order to predict the orientation of a transmembrane
protein more efficiently.

2. Methods

2.1. Transmembrane protein topology datasets

The training set that we used contains 72 α-helical transmembrane
proteins with three dimensional structures determined at near atomic
resolution, deposited in the Protein Data Bank (PDB) [2]. The dataset
is the one used for the development of HMM-TM [12], and in all cases,
the sequences used were obtained from Uniprot [54] after the removal
of any signal peptides. For the construction of an independent test set
we used PDBTM [55] in order to collect all the available high-
resolution structures of eukaryotic α-helical TM proteins deposited in
PDB until May 2013. We performed a redundancy check, using BLAST
[56] and a non-redundant dataset was created by removing all chains
for which a putative homologous entry was already in the set or the
training set of 72 membrane proteins. The threshold was defined as
b30% pairwise sequence similarity (in a length of more than 80 resi-
dues) in a BLAST alignment. For sequences shorter than 80 residues,
which are frequent among single-spanning membrane proteins, we
used the similarity of less than 50% as threshold in a length of more
than 30 residues. The final set consists of 49 α-helical TM proteins
(25 single spanning and 24 multi-spanning TM proteins). In order to
access the prediction performance of HMMpTM compared against the
other prediction methods a more appropriate but smaller dataset
was created by removing any proteins sharing homology (using the
same criteria mentioned above) with the training datasets of all the
prediction methods under comparison. This dataset contains 21 trans-
membrane proteins. All datasets are available online at http://
bioinformatics.biol.uoa.gr/HMMpTM/datasets.

2.2. Phosphorylation and glycosylation site datasets

For the collection of phosphorylation sites in eukaryotic TMproteins,
UniProt Accession numbers and positions of phosphorylation sites were
retrieved from PhosphoSitePlus [57] and Phospho.ELM version 9.0 [58].
Although PhosphoSitePlus and Phospho.ELMboth include kinase specif-
ic and non-specific phosphorylation sites, we deliberately used kinase
specific phosphorylation data, since they provide information about
the catalytic kinase responsible for the modification. N-linked and
O-linked glycosylation data were retrieved from UniProt [54] using
the subsection of the ‘Sequence annotation (Features)’ section that
specifies the position and type of each covalently attached glycan
group (FT MOD RES). Modified sites annotated with non-experimental
qualifiers (such as ‘Potential’, ‘Probable’, ‘By similarity’) were excluded.
In addition, we used O-GlycBase version 6.0 [59] and ExTopoDB version
1.0 [60] in order to retrieve additional glycosylation data.We examined
the location of phosphorylation and glycosylation sites in relation to the
topology of transmembrane proteins. Topology information for phos-
phorylated and glycosylated transmembrane proteins was retrieved
from Uniprot's sequence annotation, PDB if a three dimensional
structure of the protein was available and from literature informa-
tion present in ExTopoDB. All datasets are available online at
http://bioinformatics.biol.uoa.gr/HMMpTM/datasets/.

2.3. Two stage approaches

We examined two different two-stage approaches for the
combination of transmembrane protein topology prediction with
phosphorylation and glycosylation site prediction. First, we used
predicted phosphorylation and glycosylation sites as constraints
to topology prediction. Predicted phosphorylation and glycosyla-
tion sites were used as constraints for cytoplasmic and extracel-
lular localization respectively. A second approach was the use of
topology prediction results as a filter for phosphorylation and
glycosylation site prediction. More specifically, we evaluated as
predicted phosphorylation sites, only sites residing in predicted
cytoplasmic regions. In addition, predicted glycosylation sites in
transmembrane and cytoplasmic regions were ignored. In all
cases, HMM-TM was used for the topology prediction of transmem-
brane proteins. NetPhosK, NetNGlyc and NetOGlyc were used for phos-
phorylation, N-linked glycosylation and O-linked glycosylation site
prediction, respectively.

2.4. The Hidden Markov Model

The HiddenMarkovModel (HMM) that we used is quite similar to
the one proposed by HMM-TM. It consists of five different sub-
models corresponding to the five desired labels to predict (Fig. 1),



Fig. 1. A schematic representation of the model's architecture. The model consists of five sub-models denoted by the labels: Kinase-specific phosphorylation, Cytoplasmic loop,
Transmembrane Helix and Extracellular loop, N/O-linked glycosylation. Within each sub-model, states with the same shape, size and color are sharing the same emission
probabilities (parameter tying). Allowed transitions are indicated with arrows.
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the Cytoplasmic Loop sub-model, the Transmembrane Helix sub-
model, the Extracellular Loop sub-model, the Phosphorylation Site
sub-model corresponding to kinase-specific phosphorylation sites
and the Glycosylation Site sub-model used to model the existence
of N/O-linked glycosylation sites.

The model is cyclic, consisting of 306 states, including begin (B) and
end (E) states (Fig. 1) with 206 freely estimated transitions. On the
other hand, the total number of freely estimated emission probabilities
is 3036, yielding a total number of freely estimated parameters equal to
3242. All states are connected with the appropriate transition probabil-
ities in order to be consistent with the known structures, that is, to en-
sure appropriate length distribution. The inner and outer loops are
modeled with a “ladder” architecture. At both ends, there is a self
transitioning state corresponding to residues too distant from themem-
brane; these cannot be modeled as loops, hence that state is named
“globular”. Due to the fact that phosphorylation and glycosylation sites
are compartment specific, the Phosphorylation Site and Glycosylation
Site sub-models are connected with the Cytoplasmic Loop and the
Extracellular Loop sub-models, respectively. The Phosphorylation Site
sub-model includes additional sub-models, each one corresponding to
a kinase-specific phosphorylation pattern. Each phosphorylation
pattern includes the phosphorylation site and 4 flanking residues at
each side of the modified site (−4, +4). For N-linked and O-linked
glycosylation patterns, in the Glycosylation Site sub-model, we used 6
flanking residues at each side of the modified site (−6, +6).

Due to the fact that there was not a dataset available where both
the topologies of transmembrane proteins and the locations of phos-
phorylation (kinase-specific) and glycosylation sites were known,
the model could not be trained as a whole. The Cytoplasmic Loop,
the Transmembrane Helix and the Extracellular Loop sub-models
correspond to the original Hidden Markov Model of HMM-TM and
therefore we used the same emissions and transitions as described
and estimated in HMM-TM, where the Baum–Welch algorithm for
labeled sequences had been used [12]. On the other hand, emissions
and transitions for the Phosphorylation Site and the Glycosylation
Site sub-models were calculated using the 1022 and 1429 phosphor-
ylation and glycosylation sites, respectively. In addition, the transi-
tions from the Cytoplasmic Loop and the Extracellular Loop sub-
models to the Phosphorylation Site and the Glycosylation Site
sub-models were manually set. The decoding is performed using the
Posterior–Viterbi algorithm [61].
2.5. Comparison to transmembrane protein topology prediction methods

To evaluate the accuracy of the developed method we used the
independent test set of 49 TM proteins and compared our model
against the performance of various prediction methods such as
TMHMM [11], HMMTOP [14], PHOBIUS [13], PHILIUS [17], TOPCONS
[24], TOPCONS-single [62], SCAMPI [33], OCTOPUS [18], MEMSAT3
[29] and MEMSAT_SVM [16]. In each case we used the Mathew's
correlation coefficient (C), the percentage of correctly predicted
residues (Q) [63], the segment overlap (SOV) measure [64] and the
percentage of correctly predicted transmembrane segments and
topologies.

In addition, following the approach of Tsirigos et al. [65], we
used three additional large-scale datasets. A dataset of 546 membrane
proteins with experimentally determined C-terminal locations in
Saccharomyces cerevisiae [66] and the two datasets we compiled with
410 and 765 transmembrane proteins with experimentally verified
phosphorylation and glycosylation sites respectively. In the S. cerevisiae
dataset, we evaluated the prediction performance through the correct
topology prediction of the experimentally determined C-terminal loca-
tions only. In the phosphorylation and glycosylation datasets, we exam-
ined the correct topology prediction of the modified sites only
(cytoplasmic and extracellular respectively). All datasets are available
online at http://bioinformatics.biol.uoa.gr/HMMpTM/datasets/.

2.6. Comparison to phosphorylation and glycosylation prediction methods

The prediction method we propose aims at predicting reliable
topological models of transmembrane proteins by incorporating
information about phosphorylation and glycosylation sites along
the protein sequence rather than substituting available phosphory-
lation and glycosylation prediction methods. However, we evaluate
the prediction performance of our method compared to available
phosphorylation and glycosylation predictors. In the case of phos-
phorylation prediction we used NetPhosK 1.0 [50] whereas NetNGlyc
1.0 [51] and NetOGlyc 3.1 [52] were used for glycosylation predic-
tion. In both cases, as measures of the prediction performance
we used Sensitivity (Sn), Specificity (Sp), Accuracy (Acc) and the
Mathew's correlation coefficient (C). True/false positives (TP, FP)
and true/false negatives (TN, FN) for each method were counted
on a per residue basis. Sensitivity is measured as TP/(TP + FN),



Table 2
Statistics for glycosylation data in alpha-helical transmembrane proteins.

Glycosylation type Proteins Sites S T N

N-linked 751 1313 – – 1313
O-linked 40 116 61 55 –

Total 765 1429 61 55 1313
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Specificity is measured as TN/(TN + FP), Accuracy is calculated
as (TP + TN)/(TP + TN + FP + FN) and Matthews Correlation
Coefficient (C) is calculated as (TP ∗ TN − FP ∗ FN)/√((TN +
FN) ∗ (TN + FP) ∗ (TP + FN) ∗ (TP + FP)). Moreover, S/T/Y/N resi-
dues that have not been shown to be modified (phosphorylated or
glycosylated) were used as negative data. However, we have to
note that some of the negative data could be modified sites not
experimentally studied yet.

3. Results

3.1. Analysis of phosphorylation and glycosylation sites in transmembrane
proteins

PhosphoELM [58] contains more than 42,500 phosphorylation sites
in 8718 phosphorylated eukaryotic proteins and PhosphoSitePlus [57]
is comprised of approximately 208,928 phosphorylation sites in
31,642 proteins from different species. Using both databases we com-
piled a set of 32,667 unique phosphorylated proteins and further select-
ed 29,925 entriesmapped to Uniprot. According to Uniprot's annotation
we selected 5970 transmembrane proteins having both kinase specific
and non-specific phosphorylation data. Subsequently, we selected 502
transmembrane proteinswith information about 107 kinasesmediating
the phosphorylation process. However, only 9 major protein kinase
types (PKA, PKC, CAMKII, MAPK, CK1, CK2, GRKs, CDK1, and SRC)
were used, where enough data were available for further analysis
(Table 1). This resulted in 410 transmembrane proteins having 719,
161 and 142 phosphorylated Serine, Threonine and Tyrosine residues,
respectively. Moreover, we collected 1313 N-linked and 116 O-linked
experimentally verified glycosylation sites in 751 and 40 transmem-
brane proteins, respectively (Table 2).

First, themodified (phosphorylated and glycosylated) proteinswere
classified according to the number of their TM segments (Fig. S2) and
their functions. As a result, 161 out of the 410 phosphorylated proteins
were single spanning with 109 characterized as type I. In addition,
among the 249 multi-spanning TM proteins there are 49 proteins with
7 TM segments that belong to theG-protein coupled receptor superfam-
ily (GPCRs). Moreover, there are 111 protein channels involved in pas-
sive transport (facilitated diffusion) with 2–24 TM segments. Overall,
there are 197 proteins with transporter activity, 145 proteins with
receptor activity and 77 proteins with catalytic activity. As shown in
Table 1, the 410 transmembrane proteins are modified by 9 protein
kinase types. Most of the transmembrane proteins we collected are
modified by kinases of the AGC group (PKA, PKC, GRKs), which contains
many intracellular signaling kinases which are modulated by cyclic
nucleotides (PKA) and phospholipids (PKC).

In all cases, the recognition motifs in the substrate transmembrane
protein sequences were similar to the accepted consensus sequence
motifs (Table S1). Sequence variations around the acceptor sites in
some cases (e.g. CK1) occur as a result of the small number of observed
phosphorylation sites in transmembrane proteins. As a result, we
Table 1
Statistics for kinase-specific phosphorylation data in α-helical transmembrane proteins.

Catalytic kinase Proteins Sites S T Y

Protein kinase A (PKA) 140 282 254 28 –

Protein kinase C (PKC) 179 336 273 63 –

Ca2+/calmodulin-dependent protein kinase
II (CAMKII)

51 81 62 19 –

Casein kinase 1 (CK1) 12 25 21 4 –

Casein kinase 2 (CK2) 47 93 80 13 –

Mitogen-activated protein kinases (MAPKs) 32 60 35 25 –

Cyclin-dependent kinase 1 (CDK1) 15 18 11 7 –

G protein-coupled receptor kinases (GRKs) 24 83 60 23 –

Proto-oncogene tyrosine-protein kinase
Src (SRC)

73 142 – – 142

Total 410 1022 719 161 142
trained the phosphorylation and glycosylation site sub-models of the
HMM using the phosphorylation (−4, +4) and glycosylation patterns
(−6, +6) obtained from non-transmembrane sequences modified by
the certain kinase category.

The majority of glycosylated transmembrane proteins are single-
spanning (543 out of 765) (Fig. S2), mostly with receptor and signal
transduction activity involved in cell communication. Among the glyco-
sylated transmembrane proteins, there are 130 proteinswith transport-
er activity, 199 proteins with receptor activity and 208 proteins with
catalytic activity. As previously reported for N-linked glycosylation
[67], 60% of glycosylation sites had the Asn-X-Thr motif. Notably, 95%
of O-linked glycosylated TM proteins were single-spanning.

Next, we examined the location of phosphorylation and glycosyla-
tion sites in relation to the topology of TM proteins. As expected, phos-
phorylation sites are located at the cytoplasmic regions of TM proteins
whereasN-linked andO-linked glycosylation sites are located at regions
facing the extracellular space. In both cases, we observe thatmost phos-
phorylation and glycosylation sites are located at the terminal regions of
transmembrane proteins [68] (Fig. S1). However, phosphorylation sites
are mostly located at the C-terminal region, as opposed to glycosylation
sites that are mostly located at the N-terminal region.

Specifically, 71% of glycosylation sites are located at the N-terminal
region and only 15% of sites are located at the C-terminal region. Inter-
estingly, in multi-spanning TM proteins, 95% of glycosylation sites are
located at loop regions and 85% of them are located at the first extracel-
lular loop or the first extracellular loop that is larger than approximately
30 residues. These findings are in agreement with previous studies
reporting that, glycosylation sites are less frequent at the C-terminal
end of a protein [39,69] and that when N-glycosylation sites are
contained within more than one extracellular loop, only the first loop
is modified [43]. However, in 40 multi-spanning TM proteins, glycosyl-
ation sites are not located at the first extracellular loop. Closer investiga-
tion of these cases showed that the first extracellular loop in these
transmembrane proteins is smaller than approximately 30 residues
and therefore these loops could not be glycosylated (according to the
12 + 14 rule) [40]. By contrast, 64% of phosphorylation sites are located
at the C-terminal region of TM proteins. Inmulti-spanning TM proteins,
only 26% of phosphorylation sites are located at loop regions and 16% of
them are found in regions smaller than 30 residues.
3.2. Two stage approaches

As already discussed, one approach to combine topology prediction
with phosphorylation and glycosylation site prediction is to use predict-
ed topologies to filter the predictedmodified sites across the transmem-
brane protein sequence. For this reasonwe usedHMM-TMas a topology
prediction algorithm and filtered the prediction results of NetPhosK,
NetNGlyc and NetOGlyc on the datasets of 410 and 765 phosphorylated
and glycosylated transmembrane proteins. The overall prediction accu-
racy of NetPhosK, NetNGlyc and NetOGlyc before and after topology
prediction filtering is summarized in Table 3. We observe that topology
filtering results in increased prediction specificity for phosphorylation
and glycosylation prediction. Importantly, in kinase specific phosphory-
lation prediction usingNetPhosK, specificity increased 29%. However, in
all cases, prediction sensitivity significantly decreases since falsely pre-
dicted topologies produce incorrect filters for phosphorylation and gly-
cosylation site prediction results.



Table 3
Sensitivity (Sn), Specificity (Sp) and Mathew's correlation coefficient (C) measures for
phosphorylation and glycosylation site prediction before and after transmembrane
protein topology filtering in the sets of 410 and 765 phosphorylated and glycosylated
transmembrane proteins.

Method Sn Sp C

Phosphorylation site prediction
HMMpTM 0.64 0.76 0.23
NetPhosK 0.78 0.45 0.15
NetPhosK (after topology filtering) 0.63 0.74 0.11

N-linked glycosylation site prediction
HMMpTM 0.64 0.85 0.28
NetNGlyc 0.80 0.87 0.40
NetNGlyc (after topology filtering) 0.56 0.92 0.34

O-linked glycosylation site prediction
HMMpTM 0.22 0.95 0.14
NetOGlyc 0.70 0.77 0.23
NetOGlyc (after topology filtering) 0.42 0.92 0.24
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Another approach we tested was the use of predicted phosphorylat-
ed and glycosylated sites as topological constraints for transmembrane
protein topology prediction. To evaluate this methodology we used
the non-redundant set of 49 alpha-helical transmembrane proteins.
When all predicted phosphorylation and glycosylation sites are incor-
porated, the topology prediction procedure results in error, since neigh-
boring residues are predicted as phosphorylated and glycosylated. In
specific, this procedure produced conflicting topological constraints
for 24 out of 49 transmembrane proteins. For the remaining 25
transmembrane proteins, only 5 (20%) were predicted with correct
topologies. Thus, it is clear that this information cannot be used as topo-
logical information for constrained topology predictions. In an effort to
recover from this error, we used as constraints only predicted phos-
phorylation and glycosylation sites with the highest probability. Again,
this procedure produced conflicting topological constraints for 5 out of
49 transmembrane proteins. For the remaining 44 transmembrane
proteins, only 18 (41%) were predicted with correct topologies. There-
fore, we observe again that the combination of the two independent
predictions (topology prediction and post-translational modification
prediction) results in decrease of topology prediction accuracy.

3.3. Topology prediction performance

In Table 4, we compare the topology prediction performance of
our HMM, on a test set of 49 eukaryotic transmembrane proteins.
Table 4
Topology prediction accuracy on an independent dataset of 49 eukaryotic transmembrane
proteins with known three-dimensional structures.

Method Q C SOV Correctly predicted
TM segments (%)

Correctly predicted
topologies (%)

HMMpTM 0.88 0.70 0.91 81.6 75.5
HMMpTM_phos 0.88 0.72 0.91 75.5 71.4
HMMpTM_glyc 0.88 0.70 0.90 79.6 71.4
HMM-TM 0.86 0.66 0.87 71.4 69.4
TMHMMb 0.87 0.67 0.87 69.4 61.2
HMMTOPb 0.87 0.68 0.90 77.6 69.4
Phobiusb 0.86 0.65 0.86 71.4 59.2
Philiusb 0.87 0.68 0.89 75.5 69.4
SCAMPIa,b 0.88 0.69 0.90 83.7 75.5
SCAMPI-singleb 0.87 0.66 0.89 79.6 71.4
OCTOPUSa,b 0.88 0.69 0.90 83.7 75.5
MEMSAT3a,b 0.88 0.70 0.92 87.8 83.7
MEMSAT-SVMa, b 0.91 0.78 0.96 95.9 85.7
TOPCONSa,b 0.89 0.71 0.92 85.7 77.6
TOPCONS-singleb 0.87 0.66 0.88 73.5 63.3

a Methods using evolutionary information (through multiple sequence alignments).
b These predictors were trained on sets containing sequences homologous to the ones

included in the test set we used here.
We have to note that the test set used has no homology with the train-
ing set of HMM-TM and HMMpTM. We observe 10.2% improvement in
correctly predicted transmembrane segments and 6.1% in correctly
predicted topologies compared to HMM-TM. It is evident that the incor-
poration of phosphorylation and glycosylation site prediction in topolo-
gy prediction results in improved prediction performance. In order to
access the influence of phosphorylation and glycosylation separately
we developed two additional models. An HMM having only the
Phosphorylation site sub-model (HMMpTM_phos) and one with only
theGlycosylation site sub-model (HMMpTM_glyc). In both caseswe ob-
serve an improvement in topology prediction compared to HMM-TM
(Table 4). Interestingly, the incorporation of glycosylation site predic-
tion (HMMpTM_glyc) results in better prediction of the number and
the position of transmembrane segments compared to the use of
phosphorylation site prediction only (HMMpTM_phos). However,
the combination of both phosphorylation and glycosylation results
(HMMpTM) in the highest topology prediction accuracy. Even though
some of the proteins present in the test set were also included in the
sets used for training the other predictors, we observe that HMMpTM
performs better, compared tomethods that use single sequences. As ex-
pected [15], prediction methods using multiple sequence alignments
(MSA) outperform the methods using single sequence. In order to
better access the prediction performance of HMMpTM compared to
prediction methods that utilize multiple sequence alignments a more
appropriate but smaller dataset (21 transmembrane proteins) was cre-
ated by removing any proteins sharing homology with the training
datasets of all compared prediction methods (Table 5). We observe
again that HMMpTM outperforms HMM-TM and other single sequence
based prediction methods or a consensus of them (TOPCONS-single).
Compared to methods that use multiple sequence alignments we
observe that HMMpTM has in most cases comparable or better perfor-
mance. Only MEMSAT3 performs better in predicting the correct topol-
ogy of proteins and MEMSAT-SVM in predicting the correct number of
transmembrane segments in each protein.

In addition, we evaluated the prediction performance of HMMpTM
in three additional large scale datasets. In all three cases, HMMpTMper-
forms better than HMM-TM. In particular, HMMpTM predicts correctly
79% of the experimentally determined C-terminal locations in the
S. cerevisiae dataset compared to 73% for HMM-TM (Table S2). As
already discussed, phosphorylation and glycosylation sites in trans-
membrane proteins have cytoplasmic and extracellular topology
respectively. Therefore, available topology prediction methods,
although they cannot provide information about the existence of
modified sites, they should efficiently predict the site's topology.
As shown in Table S2, HMMpTM correctly predicts the topology
for 91% of the phosphorylation sites and 78% of the glycosylation
Table 5
Topology prediction accuracy on an independent dataset of 21 eukaryotic transmembrane
proteins with known three-dimensional structures.

Method Q C SOV Correctly predicted
TM segments (%)

Correctly predicted
topologies (%)

HMMpTM 0.90 0.75 0.93 85.7 81.0
HMM-TM 0.90 0.74 0.91 76.2 76.2
TMHMM 0.90 0.75 0.90 71.4 61.9
HMMTOP 0.90 0.74 0.93 81.0 76.2
Phobius 0.90 0.75 0.91 71.4 61.9
Philius 0.91 0.77 0.89 71.4 71.4
SCAMPIa 0.90 0.74 0.95 85.7 76.2
SCAMPI-single 0.89 0.70 0.92 81.0 76.2
OCTOPUSa 0.90 0.76 0.95 85.7 76.2
MEMSAT3a 0.90 0.75 0.95 90.5 85.7
MEMSAT-SVMa 0.93 0.82 0.95 90.5 81.0
TOPCONSa 0.91 0.78 0.95 85.7 81.0
TOPCONS-single 0.91 0.76 0.94 81.0 76.2

a Methods using evolutionary information (through multiple sequence alignments).
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sites, resulting in 12% and 7% improvement respectively, compared
to HMM-TM.

3.4. Phosphorylation and glycosylation prediction performance

HMMpTM incorporates phosphorylation and glycosylation predic-
tion in the topology prediction procedure, resulting in improved perfor-
mance. In order to evaluate the prediction accuracy for phosphorylation
and glycosylation sites we compared HMMpTM to NetPhosK 1.0,
NetNGlyc 1.0 and NetOGlyc 3.1. In kinase specific phosphorylation pre-
dictionwe observe that HMMpTMshows comparable and in some cases
better performance than NetPhosK (Table S3).

However, we have to note that HMMpTM has been designed and
optimized for accurate topology prediction of transmembrane proteins.
Consequently, in the case of phosphorylation and glycosylation site
prediction, high specificity was favored since a large number of false
positiveswould lead themodel to awrong topology. Therefore, in phos-
phorylation and glycosylation prediction performance, sensitivity and
specificity are not balanced. Notably, HMMpTM shows comparable
performance with other available prediction tools (Tables S3, S4, S5
and S6). Overall, HMMpTM predicts phosphorylation sites in trans-
membrane proteins with 64% sensitivity and 76% specificity compared
to 78% and 45% for NetPhosK. In N-linked glycosylation site prediction
our method correctly predicts the location for 64% of sites with 85%
specificity. On the other hand, in O-linked glycosylation site prediction,
HMMpTM shows relative small sensitivity compared to NetOGlyc.
Againwe have to note that HMMpTMhas been optimized for high spec-
ificity in the prediction ofmodified sites and it is not expected to be used
as a dedicated PTM predictor. A large number of false positives would
increase the probability of these regions to be predicted as cytoplasmic
or extracellular resulting in less reliable topology prediction.

4. Discussion

We presented a method that integrates a novel feature in topology
prediction. HMMpTM is not just a consensus of post-translational
modification and topology prediction but integrates in a single Hidden
Markov Model phosphorylation and glycosylation prediction in order
to more accurately predict the orientation of transmembrane proteins
in membranes. Therefore, we have shown that the accuracy in predic-
tion of transmembrane topology increases, whereas at the same time,
the model provides reliable (to some degree) predictions for glycosyla-
tion and phosphorylation. In addition, protein phosphorylation plays a
fundamental role in most of the cellular regulatory pathways and
protein glycosylation is important for protein folding and stability as
well as cell–cell interactions. Consequently, prediction of phosphoryla-
tion and glycosylation events in transmembrane proteins provides
important information about their function. N-linked glycosylation
site prediction can also serve as a molecular ruler to define the ends of
transmembrane segments [44]. Notably, SOV,which preciselymeasures
the overlap of predicted with observed transmembrane segments,
improves 4% compared to HMM-TM. Reliable phosphorylation and gly-
cosylation sites in transmembrane proteins provide valuable topological
information and can be additionally used for the evaluation of the per-
formance of topology prediction methods for transmembrane proteins
[65]. We provide evidence that the incorporation of phosphorylation
and glycosylation probabilities in topology prediction improves the pre-
diction performance and can be implemented in existing prediction
methods. The clear improvement of HMMpTMover HMM-TM in all rel-
evant measures of accuracy provides evidence that the same procedure
may also increase the performance of the other predictors, although a
smaller improvement is expected for top-scoring methods. Moreover,
the samemethod can be used also for methods that utilize evolutionary
information. There is evidence that evolutionary information in the
form of multiple alignment can also increase the prediction accuracy
of methods for predicting post-translational modifications [70–74], so
this needs to be investigated in future studies.
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