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Isolated atrial amyloidosis (IAA) is a common localized form of amyloid deposition within the atria
of the aging heart. The main constituents of amyloid fibrils are atrial natriuretic peptide (ANP) and
the N-terminal part of its precursor form (NT-proANP). An ‘aggregation-prone’ heptapeptide
(114KLRALLT120) was located within the NT-proANP sequence. This peptide self-assembles into amy-
loid-like fibrils in vitro, as electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy and
Congo red staining studies reveal. Consequently, remedies/drugs designed to inhibit the aggregation
tendency of this ‘aggregation-prone’ segment of NT-proANP may assist in prevention/treatment of
IAA, congestive heart failure (CHF) or atrial fibrillation (AF).
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction cardiac ventricles [6]. The second type, called isolated atrial amy-
Several soluble proteins and peptides have the ability to aggre-
gate under certain conditions into higher-order fibrillar structures
known as amyloid fibrils [1,2]. Deposition of amyloid fibrils in
various tissues and organs has been associated with a variety of
pathological conditions termed amyloidoses [3]. This diverse group
of conformational diseases includes, amongst others, a number of
neurodegenerative disorders (such as Alzheimer’s, Parkinson’s
and Huntington’s), prion diseases, type II diabetes, several cases
of carcinomas (e.g. medullary carcinoma, prolactinoma or insuli-
noma), heart conditions (cardiac amyloidoses), etc. [4].

Amyloid deposition in the elderly heart is an ordinary finding
[5]. Cardiac amyloidosis is divided into two distinct types, a
systemic and a localized form. The first type, designated as senile
systemic amyloidosis (SSA), is associated with the formation of
amyloid fibrils, derived from transthyretin (TTR), mainly in the
loidosis (IAA), involves the localized deposition of amyloid fibrils
in the atria of the aging heart [7]. As an age related condition, it
frequently appears after the fourth decade and prevails in higher
age groups (>80–85% in ages above 80 years) [8], showing a predis-
position for females [9]. Experimental evidence and clinical studies
have indicated an increased frequency associated with different
cardiac diseases, such as congestive heart failure (CHF), atrial fibril-
lation (AF) and atrial thromboembolism [10,11]. Additional clinical
effects of amyloid deposits in the heart atria involve, apart from
cardiac failure, several rhythm disturbances [12], deriving from
damaged diastolic function due to the mechanical disturbance of
myocyte movement by the diffuse deposition of amyloid [13].

Atrial natriuretic peptide (ANP) has been identified as the pri-
mary component of IAA amyloid fibrils [14]. However, immunohis-
tochemical studies have also signified the presence of the
N-terminal remnant of its precursor form, 1–98proANP and Brain
Natriuretic Peptide (BNP) [14,15]. It is expressed and stored in
cytoplasmic granules of the myocyte cells of the cardiac atria.
The major stimulant for ANP release is atrial wall stretch as an
after-effect of increased intravascular volume [16]. The human
pre-proANP precursor, containing a hydrophobic signal peptide
(residues 1–25), is cleaved to form the 126 amino acid long proANP
precursor (Fig. 1). ProANP undergoes further cleavage by a specific
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cardiac serine protease called corin, immediately after secretion,
resulting in the production of the final mature 1–28ANP product, a
28 amino acid long hormone and the N-terminal remnant 1–98pro-
ANP (hereinafter called NT-proANP) [17].

The exact biological role of ANP still remains unclear. After
secretion in the plasma, ANP contributes in the control of circulat-
ing blood volume [18]. Moreover, it binds to guanylyl-cyclase
ANP-receptors, located in various organs, such as the brain, blood
vessels, kidney and adrenal glands, activating cGMP cascade path-
ways [19]. ANP is rapidly cleared from the blood stream by binding
to type C ANP receptors and neutral endopeptidases, both located
in the kidney and blood vessels [20]. NT-proANP has a longer half-
life than ANP [21] and even though its exact biological function is
not determined yet, it has been suggested as a biological marker
for left ventricular dysfunction [22].

Detailed theoretical and experimental evidence has repeatedly
indicated that amyloid formation is mediated by specific short
sequence regions/stretches of a polypeptide chain that have a high-
er aggregation propensity and therefore vitally contribute to its
aggregation tendency [23,24]. In this work, we determine a novel
aggregation-potent segment of NT-proANP, 114KLRALLT120, which
was initially predicted as such, by implementing AMYLPRED, our
aggregation propensity algorithm [25]. This aggregation-prone
peptide segment was synthesized (see Section 2) and here we pres-
ent experimental results, verifying its strong aggregation propen-
sity to form amyloid fibrils. It should be mentioned at this point
that, a distantly homologous peptide, KMVLYTL, has also been
determined to possess a strong aggregation propensity in the se-
quence of the N-terminal pro-brain natriuretic peptide (NT-proB-
NP) [26]. An analysis of the physico-chemical properties of both
peptides is provided (see Supplementary Table 1 and Fig. S1)
[27]. Also, we discuss our findings, implicating NT-proANP as one
of the main the driving forces in IAA fibril formation, providing a
novel target for IAA prevention/prohibition.

2. Materials and methods

2.1. Prediction of potential aggregation prone peptides in NT-proANP
and peptide synthesis

Our prediction algorithm AMYLPRED, a consensus prediction
tool of potential ‘aggregation-prone’ peptides (freely accessible to
academic users at http://biophysics.biol.uoa.gr/AMYLPRED) [25],
Fig. 1. The amino acid composition of full length atrial natriuretic peptide. It is expre
prohormone form, composed of 126 amino acids, is produced after cleavage of the signal p
a corin enzyme immediately after secretion results in the 28 amino acids in length
‘aggregation-prone’ region of NT-proANP is marked with ‘‘#’’ under the sequence. The fou
(nominal residues 37–59), show heptad periodicities of hydrophobic residues, a coiled–
was implemented on the amino acid sequence of the 1–151ANP
pre-pro-hormone. As a result, a segment of NT-proANP, with high
aggregation propensity was predicted (see Fig. 1). This heptapep-
tide, KLRALLT (nominal positions 114–120), is located close to
the C-terminal region of NT-proANP (Fig. 1). The NT-proANP
heptapeptide-analogue KLRALLT was synthesized by GeneCust
Europe, Luxembourg (purity >98%, free N- and C-terminals).

2.2. Formation of amyloid-like fibrils

The synthesized NT-proANP heptapeptide-analogue, KLRALLT,
was dissolved in distilled water (pH 5.75), at a concentration of
15 mg ml�1. After an incubation period of 1–2 weeks, mature amy-
loid-like fibril containing gels were formed. However production of
oriented fibers, suitable for X-ray diffraction, were obtained from
solutions of higher concentration of the peptide, containing mature
amyloid-like fibrils as described below.

2.3. X-ray fiber diffraction

The NT-proANP heptapeptide-analogue, KLRALLT, was dis-
solved in distilled water (pH 5.75) at a concentration of 20 mg ml�1

to produce mature amyloid-like fibrils, after 1–2 weeks incubation,
forming a fibril-containing gel. A droplet (10 ll) of the fibril con-
taining solution was placed between two aligned siliconized glass
rods (spaced 2 mm apart). The droplet was allowed to dry slowly at
ambient temperatures and humidities, for 1 h, to form an oriented
fiber suitable for X-ray diffraction. The X-ray diffraction pattern
was collected, using a SuperNova-Agilent Technologies X-ray gen-
erator equipped with a 135-mm ATLAS CCD detector and a 4-circle
kappa goniometer, at the Institute of Biology, Medicinal Chemistry
and Biotechnology, National Hellenic Research Foundation (CuKa
high intensity X-ray micro-focus source, k = 1.5418 Å), operated
at 50 kV, 0.8 mA. The specimen-to-film distance was set at
117 mm and the exposure time was set to 180s. The X-ray pattern,
initially viewed using the program CrysAlisPro [28] was displayed
and measured with the aid of the program iMosFLM [29].

2.4. Congo red staining and polarized light microscopy

Fibril suspensions of the peptide solution were applied to glass
slides and were air-dried at ambient temperatures and humidities.
The film produced, containing amyloid-like fibrils, was stained
ssed as a 151 amino acid long pre-pro-hormone, in the atrial myocyte cells. The
eptide and it is the predominant form stored within the atrial granules. Cleavage by
mature ANP and the N-terminal remnant, known as NT-proANP. The predicted
r underlined hydrophobic residues located at the N-terminal segment of NT-proANP
coil motif (a motif capable of forming a superhelix of a-helices) [26,47].
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Fig. 2. Electron micrographs of amyloid-like fibrils derived by self-assembly, from a
15 mg ml�1 solution of KLRALLT peptide in distilled water (pH 5.75). (a) Amyloid-
like fibrils appear straight, unbranched and of undetermined length with a diameter
of ca. 50–60 Å. Pre-fibrillar spherical aggregates, called spherulites, are also formed
(single arrows) indicating the ability of the KLRALLT peptide to nucleate (bar
500 nm). (b) Amyloid-like fibrils interact in a lateral fashion forming ribbons
varying in diameter (bar 500 nm). The fibrillar polymorphism observed has
previously been established as a common characteristic of amyloid-like fibrils
formed by several aggregation-prone peptides or proteins [32].

Fig. 3. X-ray diffraction pattern from an ‘oriented’ fiber of the NT-proANP KLRALLT
peptide-analogue amyloid-like fibrils. The fiber axis (F) is vertical (meridian, M),
whereas the equator is horizontal (E). The ‘‘cross-b’’ structure is evident. A 4.7 Å
reflection is due to the distance between successive hydrogen bonded b-strands and
a 11.9 Å reflection results from the spacing between packed b-sheets. However,
there is no preferential orientation (the reflections appear as rings) of the
meridional and equatorial reflections (it is not a typical oriented ‘‘cross-b’’ pattern).
See, also Section 3.
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with a 1% Congo red solution in distilled water (pH 5.75) for 20 min
[30]. Excess stain was removed through tap water washes [30]. The
samples were observed under bright field illumination and
between crossed polars, using a Leica MZ75 polarizing stereomi-
croscope equipped with a JVC GC-X3E camera.

2.5. Negative staining

For negative staining, a drop (�5 ll) of the fibril containing
solutions of the KLRALLT peptide was applied to glow-discharged
400-mesh carbon-coated copper grids, for 60 s. The grids were
flash-washed with distilled water and stained with a drop of 2%
(w/v) aqueous uranyl acetate for 60 s. Excess stain was removed
by blotting with a filter paper. The fibril containing grids were ini-
tially air-dried and examined with a Morgagni™ 268 transmission
electron microscope, operated at 80 kV. Digital acquisitions were
performed with an 11 Mpixel side-mounted Morada CCD camera
(Soft Imaging System, Muenster, Germany).

2.6. Attenuated total reflectance Fourier-transform infrared
spectroscopy and post-run spectra computations

A 10-ll drop of the fibril containing solution of the NT-proANP
heptapeptide-analogue was cast on a front-coated Au mirror and
left to dry slowly at ambient conditions to form a thin film. IR spec-
tra were obtained at a resolution of 4 cm�1, utilizing an IR micro-
scope (IRScope II, BrukerOPTICS, Bruker Optik GmbH, Ettlingen,
Germany), equipped with a Ge ATR objective lens (20�) and
attached to a FT-IR spectrometer (Equinox 55, BrukerOPTICS).
Ten 32-scan spectra were collected from each sample and averaged
to improve the S/N ratio. All spectra are shown in the absorption
mode, after correction for the wavelength-dependence of the pen-
etration depth (dp analogous k). Derivatives were computed
analytically using routines of the Bruker OPUS/OS2 software
including smoothing over a ±8 cm�1 range around each data point,
performed by the Savitsky–Golay algorithm [31]. Smoothing over
narrower ranges resulted in deterioration of the S/N ratio and did
not increase the number of minima that could be determined with
confidence. The minima in the second derivative were used to
determine the corresponding absorbtion band maxima.

3. Results

After incubation for 1–2 weeks, the KLRALLT peptide self-
assembles into amyloid-like fibrils (Fig. 2a and b), forming gels.
Electron micrographs display the amyloid-like fibrils to be straight
and unbranched with an indefinite length (several microns long)
and a diameter of approximately 50–60 Å (Fig. 2a). Frequently,
the fibrils coalesce laterally and in register forming ribbons,
varying in diameter (Fig. 2b). This apparent morphological poly-
morphism has previously been established as a common character-
istic of amyloid-like fibrils formed by several aggregation-prone
peptides or proteins [32]. Furthermore, the presence of supramo-
lecular spherical structures (Fig. 2a, arrows) signifies the possibility
that the KLRALLT peptide self-assembles, initially forming spheru-
lites. Spherulites have been associated with early amyloid fibrillo-
genesis events, for several proteins involved in the formation of
functional [33] or pathological amyloids, as possible pre-fibrillar
amyloid intermediates and are implicated with the cytotoxicity
mechanisms of amyloidoses [34,35].

The X-ray diffraction pattern produced by an oriented fiber,
formed by solutions containing amyloid-like fibrils from the
peptide KLRALLT, resembles a typical ‘‘cross-b’’ architecture that
amyloid fibrils adopt (Fig. 3) [36,37]. Specifically, a strong reflec-
tion at 4.7 Å is attributed to the interchain distance between
hydrogen bonded b-strands. Furthermore, the spacing at 11.9 Å is
ascribed to the packing distance between packed b-sheets.
However, there is no preferential orientation of these two reflec-
tions along the meridian or the equator of the X-ray diffraction
pattern, as in a typical cross-b pattern, implying that the amy-
loid-like fibrils adopt all possible orientations in the fiber (which
is not really oriented!).

Complementary experimental evidence produced by the ATR
FT-IR (1500–1800 cm�1) spectrum of the KLRALLT peptide, sup-
ports the presence of an antiparallel b-sheet conformation for this
peptide, in agreement to the results obtained from X-ray diffrac-
tion (Fig. 4). Particularly, the spectrum displays a strong amide I
band at 1624 cm�1, due to the preponderance of b-sheet,



Table 1
Bands observed in the ATR FT-IR (1500–1800 cm�1) spectrum produced from a
hydrated film of the ‘aggregation-prone’ heptapeptide, KLRALLT, after self-assembly,
and their tentative assignments (Fig. 4).

Bands (cm�1) Assignment

1535 b-Sheet (amide II)
1624 b-Sheet (amide I)
1666 TFA
1693 Antiparallel b-sheet
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supported by the amide II band at 1535 cm�1 [38–40]. Moreover,
the additional component at 1693 cm�1, in the amide I band, is
probably an indication that the b-sheets are antiparallel (Table 1)
[38–40]. Proteins containing antiparallel b-sheets usually exhibit
a high frequency b-sheet component that arises from transition
dipole coupling, typically located 50–70 cm�1 higher than the main
b-sheet band [40]. The detailed spectrum, in the region 1100–
1800 cm�1, is also provided (Supplementary Table 2 and Fig. S2).

Amyloid-like fibrils have been shown to bind the stain Congo
red [41]. Films produced by the fibril containing peptide KLRALLT
solutions were initially stained by the characteristic for amyloid
fibrils Congo red dye (see Section 2) and then were studied under
a polarizing microscope. Amyloid deposits composed of KLRALLT
amyloid-like fibrils bind Congo red, as observed under bright field
illumination (Fig. 5a) and exhibit the characteristic for amyloid
fibrils apple/green birefringence when viewed under crossed
polars (Fig. 5b).

4. Discussion

Amyloids arise from self-aggregating proteins or peptides with
diverse functional properties, different amino acid sequences and
Fig. 4. ATR FT-IR (1500–1800 cm�1) spectrum obtained from a thin hydrated-film
containing mature amyloid-like fibrils derived by KLRALLT peptide self-aggregation.
The second derivative spectrum was included to identify the exact band maxima
and their tentative assignments. The ATR FT-IR spectrum is indicative of the
preponderance of an antiparallel b-sheet secondary structure (Table 1).
structural characteristics. A growing number of such proteins and
peptides have been found to form amyloid fibrils, both in vitro
and in vivo, supporting early observations, which led to the con-
cept that, every protein may adopt both a globular and a fibrillar
structure under appropriate conditions [42]. Several studies, both
theoretical and experimental, have shown that self-aggregating
proteins contain potent aggregation-prone segments within their
native sequence [23,25,43]. Such aggregation-prone peptide re-
gions have been proposed to act as templates for amyloid fibril for-
mation after protein structural rearrangements [25]. An impressive
genome-wide survey revealed that most proteins contain at least
one peptide region with such a high aggregation tendency [43].

The KLRALLT peptide was predicted as a potential aggregation-
prone peptide segment of NT-proANP by the AMYLPRED algorithm
[25]. Our experimental results, presented here (see Section 3), in-
deed verify that this peptide-analogue self-assembles forming
amyloid-like fibrils, which satisfy all the basic criteria for amyloids
[41]. Apparently, NT-proANP has an inherent ability to form
amyloid fibrils, mainly due to the KLRALLT peptide, in support to
previous immunohistochemical data indicating its presence in
amyloid deposits of heart atria [15]. Several polypeptide hormones
have been identified in both mature and precursor states in amy-
loid fibrils [44]. Our data corroborate this concept adding ANP
and NT-proANP as another hormone-prehormone amyloid fibril
formation case.

Previous experimental studies have indicated that ANP poly-
merization into amyloid fibrils is a nucleation dependent process
[45,46]. However, mature ANP has a substantially higher aggrega-
tion tendency once seeded [10,45,46]. Therefore, it is possible that
pre-fibrillar aggregates are actually formed by NT-proANP, driven
by the aggregation propensity of the KLRALLT peptide introducing
a nucleation effect for ANP polymerization into amyloid fibrils. This
may also explain why, although ANP is the predominant compo-
nent in amyloid fibrils of the atria, NT-proANP is also found as a
secondary supporting component [15]. Further, more refined,
experimental work is needed to verify this hypothesis.

Elegant theoretical and experimental work by Richards and co-
workers, more than a decade ago, indicated the presence of a
coiled–coil motif region (a region capable of forming a superhelix
of a-helices), close to the N-terminal of NT-proANP (as seen by
the underlined hydrophobic residues in Fig. 1), suggesting that
NT-proANP oligomerization may occur via these coiled–coil motifs
of hydrophobic residues [47]. Therefore, an alternative approach
may involve NT-proANP forming early oligomers through coiled–
coils and further polymerizing into atrial amyloid fibrillar struc-
tures, as a result of the self-aggregation potential of the KLRALLT
aggregation prone peptide. A similar process has recently been
proposed to occur for the NT-proBNP natriuretic pro-hormone [26].

It is not clarified yet why polypeptide hormones form amyloid
fibrils in vivo. Abnormal high concentrations of the polypeptide,
close to the hormone secretion site, result in the formation of amy-
loid deposits in most localized amyloidoses conditions [10]. NT-
proANP has a significantly longer half-life compared to ANP [21].
Consequently, it is found in correspondingly higher concentrations
both in plasma and heart atria. Additionally, ANP and NT-proANP



Fig. 5. Photomicrographs of an amyloid-like fibril containing gel, derived from
KLRALLT peptide-analogue self-assembly, stained with Congo red. (a) The Congo red
dye is bound, as seen under bright field illumination. (b) The apple-green
birefringence that amyloids typically exhibit is clearly seen under crossed polars.
Bar 100 lm.
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secretion is reported higher in patients with heart conditions, such
as congestive heart failure or atrial fibrillation [9]. As a result, high
concentrations of NT-proANP within the heart atria may promote
amyloid deposit formation, leading to IAA. Therefore, NT-proANP
aggregation preventing techniques may be mandatory to avoid
the aforementioned pathological heart conditions. If indeed ANP
polymerization is dependent of NT-proANP nucleation, remedies/
drugs designed to prevent aggregation of the KLRALLT peptide, fol-
lowing the example of recent impressive studies [48,49], could
prove to be of substantial importance in future IAA treatment or
prevention.
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