
G. Paliouras and Y. Sakakibara (Eds.): ICGI 2004, LNAI 3264, pp. 40–52, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Faster Gradient Descent Training of Hidden Markov
Models, Using Individual Learning Rate Adaptation

Pantelis G. Bagos, Theodore D. Liakopoulos, and Stavros J. Hamodrakas

Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, Athens 15701, Greece

{pbagos,liakop}@biol.uoa.gr, shamodr@cc.uoa.gr

Abstract. Hidden Markov Models (HMMs) are probabilistic models, suitable
for a wide range of pattern recognition tasks. In this work, we propose a new
gradient descent method for Conditional Maximum Likelihood (CML) training
of HMMs, which significantly outperforms traditional gradient descent. Instead
of using fixed learning rate for every adjustable parameter of the HMM, we
propose the use of independent learning rate/step-size adaptation, which has
been proved valuable as a strategy in Artificial Neural Networks training. We
show here that our approach compared to standard gradient descent performs
significantly better. The convergence speed is increased up to five times, while
at the same time the training procedure becomes more robust, as tested on ap-
plications from molecular biology. This is accomplished without additional
computational complexity or the need for parameter tuning.

1 Introduction

Hidden Markov Models (HMMs) are probabilistic models suitable for a wide range
of pattern recognition applications. Initially developed for speech recognition [1],
during the last few years they became very popular in molecular biology for protein
modeling [2,3] and gene finding [4,5].

Traditionally, the parameters of an HMM (emission and transition probabilities)
are optimized according to the Maximum Likelihood (ML) criterion. A widely used
algorithm for this task is the efficient Baum-Welch algorithm [6], which is in fact an
Expectation-Maximization (EM) algorithm [7], guaranteed to converge to at least a
local maximum of the likelihood. Baldi and Chauvin later proposed a gradient de-
scent method capable of the same task, which offers a number of advantages over the
Baum-Welch algorithm, including smoothness and on-line training abilities [8].

When training an HMM using labeled sequences [9], we can either choose to train
the model according to the ML criterion, or to perform Conditional Maximum Likeli-
hood (CML) training which is shown to perform better in several applications [10].
ML training could be performed (after some trivial modifications) with the use of
standard techniques such as the Baum-Welch algorithm or gradient descent, whereas
for CML training one should rely solely on gradient descent methods.

The main advantage of the Baum-Welch algorithm (and hence the ML training) is
due to its simplicity and the fact that requires no parameter tuning. Furthermore com-

Faster Gradient Descent Training of Hidden Markov Models 41

pared to standard gradient descent, even for ML training, the Baum-Welch algorithm
achieves significantly faster convergence rates [11]. On the other hand gradient de-
scent (especially in the case of large models) requires careful search in the parameter
space for an appropriate learning rate in order to achieve the best possible perform-
ance.

In the present work, we extend the gradient descent approach for CML training of
HMMs. We then, adopting ideas from the literature regarding training techniques
applied on feed-forward back-propagated multilayer perceptrons, introduce a new
scheme for gradient descent optimization for HMMs. We propose the use of inde-
pendent learning rate/step-size adaptation for every trainable parameter of the HMM
(emission and transition probabilities), and we show that not only outperforms sig-
nificantly the convergence rate of the standard gradient descent, but also leads to a
much more robust training procedure whereas at the same time it is equally simple
enough, since it requires almost no parameter tuning.

In the following sections we will first establish the appropriate notation for de-
scribing a Hidden Markov Model with labeled sequences, following mainly the nota-
tion used in [2] and [12]. We will then briefly describe the algorithms for parameter
estimation with ML and CML training and afterwards we will introduce our proposal,
of individual learning rate adaptation as a faster and simpler alternative to standard
gradient descent. Eventually, we will show the superiority of our approach on a real
life application from computational molecular biology, training a model for the pre-
diction of the transmembrane segments of β-barrel outer membrane proteins.

2 Hidden Markov Models

A Hidden Markov Model is composed of a set of (hidden) states, a set of observable
symbols and a set of transition and emission probabilities. Two states k, l are con-
nected by means of the transition probabilities αkl, forming a 1st order Markovian

process. Assuming a protein sequence x of length L denoted as:

1 2, , ...,x Lx x x= (1)

where the xi’s are the 20 amino acids, we usually denote the “path” (i.e. the sequence

of states) ending up to a particular position of the amino acid sequence (the sequence
of symbols), by π. Each state k is associated with an emission probability ek(xi),

which is the probability of a particular symbol xi to be emitted by that state. When

using labeled sequences, each amino acid sequence x is accompanied by a sequence
of labels y for each position i in the sequence:

1 2, , ...,y Ly y y= (2)

Consequently, one has to declare a new probability distribution, in addition to the
transition and emission probabilities, the probability ∆k(c) of a state k having a label

c. In almost all biological applications this probability is just a delta-function, since a

42 Pantelis G. Bagos, Theodore D. Liakopoulos, and Stavros J. Hamodrakas

particular state is not allowed to match more than one label. The total probability of a
sequence x given a model is calculated by summing over all possible paths:

This quantity is calculated using a dynamic programming algorithm known as the
forward algorithm, or alternatively by the similar backward algorithm [1]. In [9]
Krogh proposed a simple modified version of the forward and backward algorithms,
incorporating the concept of labeled data. Thus we can also use, the joint probability
of the sequence x and the labeling y given the model:

() () ()
1 10

1

| , | | ()x, y x y, x,
i i

y y

i i
i

P P P a e x aπ π π π
π π π

θ π θ π θ
+

∈Π ∈Π =

= = =∑ ∑ ∑ ∏ (4)

The idea behind this approach is that summation has to be done only over those
paths Πy that are in agreement with the labels y. If multiple sequences are available

for training (which is usually the case), they are assumed independent, and the total
likelihood of the model is just a product of probabilities of the form (3) and (4) for
each of the sequences. The generalization of Equations (3) and (4) from one to many
sequences is therefore trivial, and we will consider only one training sequence x in
the following.

2.1 Maximum Likelihood and Conditional Maximum Likelihood

The Maximum Likelihood (ML) estimate for any arbitrary model parameter, is de-
noted by:

()arg max |xML P
θ

θ θ= (5)

The dominant algorithm for ML training is the elegant Baum-Welch algorithm [6].
It is a special case of the Expectation-Maximization (EM) algorithm [7], proposed for
Maximum Likelihood (ML) estimation for incomplete data. The algorithm, updates
iteratively the model parameters (emission and transition probabilities), using their
expectations, computed with the use of forward and backward algorithms. Conver-
gence to at least a local maximum of the likelihood is guaranteed, and since it re-
quires no initial parameters, the algorithm needs no parameter tuning. It has been
shown, that maximizing the likelihood with the Baum-Welch algorithm can be done
equivalently with a gradient descent method [8]. It should be mentioned here, as it is
apparent from the above equations where the summation is performed over the entire
training set, that we consider only batch (off-line) mode of training. Gradient descent
could also be performed on on-line mode, but we will not consider this option in this
work since the collection of heuristics we present are especially developed for batch
mode of training.

() ()
1 10

1

| , | ()x x
i ii i

i

P P a e x aπ π π π
π π

θ π θ
+

=

= =∑ ∑ ∏ (3)

Faster Gradient Descent Training of Hidden Markov Models 43

In the CML approach (which is usually referred to as discriminative training) the
goal is to maximize the probability of correct labeling, instead of the probability of
the sequences [9, 10, 12]. This is formulated as:

() ()
()
, |

arg max | , arg max
|

x y
y x

x
CML P

P
Pθ θ

θ
θ θ

θ
= = (6)

When turning to negative log-likelihoods this is equivalent to minimizing the
difference between the logarithms of the quantities in Equations (4) and (3). Thus the
log-likelihood can be expressed as the difference between the log-likelihood in the
clamped phase and that of the free-running phase [9]

()log | ,y x c fP θ= − = −! ! ! (7)

where

()log |x,yc P θ= −! (8)

()log |xf P θ= −! (9)

The maximization procedure cannot be performed with the Baum-Welch algorithm
[9, 10] and a gradient descent method is more appropriate. The gradients of the log-
likelihood, w.r.t. the transition and emission probabilities according to [12] are:

c f
fc kl kl

kl kl kl kl

A A

a a a a

∂∂ −∂
= − = −

∂ ∂ ∂

!!!
 (10)

() () ()
() ()

()

c f
fc k k

k k k k

E b E b

e b e b e b e b

∂∂ −∂
= − = −

∂ ∂ ∂

!!!
 (11)

The superscripts c and f in the above expectations correspond to the clamped and
free-running phase discussed earlier. The expectations A, E, are computed as de-
scribed in [12], using the forward and backward algorithms [1, 2].

2.2 Gradient Descent Optimization

By calculating the derivatives of the log-likelihood with respect to a generic parame-
ter θ of the model, we proceed with gradient-descent and iteratively update these
parameters according to:

() ()
()

1

t

t tθ θ η
θ

+ ∂
= −

∂

!
 (12)

44 Pantelis G. Bagos, Theodore D. Liakopoulos, and Stavros J. Hamodrakas

where η is the learning rate. Since the model parameters are probabilities, performing
gradient descent optimization would most probably lead to negative estimates [8]. To
avoid the risk of obtaining negative estimates, we have to use a proper parameter
transformation, namely the normalization of the estimates in the range [0,1] and per-
form gradient-descent optimization on the new variables [8,12]. For example, for the
transition probabilities, we obtain:

()
()

'

exp

exp
kl

kl

kl
l

z

z
α

′

=
∑

 (13)

Now, doing gradient descent on z’s,

() ()
()

1

t

t t

kl kl

kl

z z n
z

+ ∂
= −

∂

!
 (14)

yields the following update formula for the transitions:

()

()
()

()
()

1

'
'

exp

exp

t

t

kl

t kl

kl t

t

kl
l kl

z

z

α η

α

α η

+

′

∂
−

∂
=

∂
−

∂

 
 
 
 
 
 

∑

!

!
 (15)

The gradients with respect to the new variables zkl can be expressed entirely in

terms of the expected counts and the transition probabilities at the previous iteration.
Similar results could be obtained for the emission probabilities. Thus, when we train
the model according to the CML criterion the derivatives of the log-likelihood w.r.t. a
transition probability is:

()' '
c f c f
kl kl kl kl kl

lkl

A A a A A
z ′

∂  = − − − − ∂  
∑! (16)

Substituting now Equation (16) into Equation (15), we get an expression entirely
in terms of the model parameters and their expectations.

()

() ()
() ()

' '
1

' ' '
'

exp

exp

t c f c f

kl kl kl kl kl kl
t l
kl

t c f c f

kl kl kl kl kl kl
l l

A A a A A

A A a A A

α η
α

α η

′+

′

− − − −
=

− − − −

   
     
   
     

∑

∑ ∑
 (17)

The last equation describes the update formula for the transitions probabilities ac-
cording to CML training with standard gradient descent [12]. The main disadvantage
of gradient descent optimization is that it can be very slow [11]. In the following
section we introduce our proposal for a faster version of gradient descent optimiza-
tion, using information included only in the first derivative of the likelihood function.

Faster Gradient Descent Training of Hidden Markov Models 45

These kinds of techniques have been proved very successful in speeding up the con-
vergence rate of back-propagation in multi-layer perceptrons, and at the same time
they are also improving the stability during training. However, even though they are a
natural extension to the gradient descent optimization of HMMs, to our knowledge no
such effort has been done in the past.

3 Individual Learning Rate Adaptation

One of the greatest problems in training large models (HMMs or ANNs) with gradi-
ent descent is to find an optimal learning rate [13]. A small learning rate will slow
down the convergence speed. On the other hand, a large learning rate will probably
cause oscillations during training, finally leading to divergence and no useful model
would be trained. A few ways of escaping this problem have been proposed in the
literature of the machine learning community [14]. One option is to use some kind of
adaptation rule, for adapting the learning rate during training. This could be done for
instance starting with a large learning rate and decrease it by a small amount at each
iteration, forcing it though to be the same for every model parameter, or alternatively
to adapt it individually for every parameter of the model, relying on information in-
cluded in the first derivative of the likelihood function [14]. Another approach is to
turn on second order methods, using information of the second derivative. Here we
consider only methods relying on the first derivative, and we developed two algo-
rithms that use individual learning rate adaptation that are presented below.

The first, denoted as Algorithm 1, alters the learning rate according to the sign of
the two last partial derivatives of the likelihood w.r.t. a specific model parameter.
Since we are working with transformed variables, the partial derivative, which we
consider, is that of the new variable. For example, speaking for transition probabili-
ties we will use the partial derivative of the likelihood w.r.t. the zkl and not w.r.t. the

original αkl. If the partial derivative possesses the same sign for two consecutive

steps, the learning rate is increased (multiplied by a factor of a+ >1), whereas if the
derivative changes sign, the learning rate is decreased (multiplied by a factor of a-

<1). In the second case, we set the partial derivative equal to zero and thus prevent an
update of the model parameter. This ensures that in the next iteration the parameter is
modified according to the reduced learning rate, using though the actual gradient. We
chose to have the learning rates bound by some minimum and maximum values de-
noted by the parameters ηmin and ηmax. In the following section Algorithm 1 is pre-

sented, for updating the transition probabilities. It is completely straightforward to
derive the appropriate expressions for the emission probabilities as well. In the fol-
lowing, the sign operator of an argument returns 1 if the argument is positive, -1 if it
is negative and 0 otherwise, whereas min and max operators are the usual minimum
and maximum of two arguments.

The second algorithm denoted Algorithm 2, constitutes a more radical approach
and is based on a modified version of the RPROP algorithm [15]. The RPROP algo-
rithm is perhaps the fastest first-order learning algorithm for multi-layer perceptrons,
and it is designed specifically to eliminate the harmful influence of the size of the

46 Pantelis G. Bagos, Theodore D. Liakopoulos, and Stavros J. Hamodrakas

partial derivative, on the weight step-size [14, 15]. Algorithm 2 is almost identical to
the one discussed above, with the only difference being the fact that the step-size (the
amount of change of a model parameter) at each iteration is independent of the mag-
nitude of the partial derivative. Thus, instead of modifying the learning rate and mul-
tiplying it by the partial derivative, we chose to modify directly an initial step-size for
every model parameter denoted by ∆, and then use only the sign of the partial deriva-
tive to determine the direction of the change. Algorithm 2 is presented below. Once
again we need the increasing and decreasing factors a+ and a- and the minimum and
maximum values for the step-size, now denoted by ∆min and ∆max respectively.

Algorithm 1

 for each k

 {
 for each l

 {
() ()1

. 0, if then
t t

kl klz z

−∂ ∂
>

∂ ∂

! !

() ()()1

maxmin .a ,
 {

 }

t t

kl klη η η− +=

() ()1

. 0, else if then

 {

t t

kl klz z

−∂ ∂
<

∂ ∂

! !

() ()()
()

1

minmax .a ,

0

t t

kl kl
t

klz

η η η− −=
∂

=
∂

!

()

() ()
()

() ()
()

1

' '
' '

exp

exp

 }

 }
 }

t

t t

kl kl

t kl

kl t

t t

kl kl
l kl

z

z

α η

α

α η

+

∂
−

∂
=

∂
−

∂

 
 
 
 
 
 

∑

!

!

It should be mentioned that the computational complexity and memory require-

ments of the two proposed algorithms is similar to standard gradient descent for CML
training. The algorithms need to store only two additional matrices with dimensions
equal to the total number of the model parameters, the matrix with the partial deriva-
tives at the previous iteration and the matrix containing the individual learning rates

Faster Gradient Descent Training of Hidden Markov Models 47

(or step-sizes) for every model parameter. In addition, a few additional operations are
required per iteration compared to standard gradient descent. In HMMs the main
computational bottleneck is the computation of the expected counts, requiring run-
ning the forward and backward algorithms. Thus, the few additional operations and
memory requirements introduced here are practically negligible.

Algorithm 2
 for each k

 {
 for each l

 {
() ()1

. 0, if then
t t

kl klz z

−∂ ∂
>

∂ ∂

! !

() ()()1

maxmin .a ,
 {

 }

t t

kl kl

− +∆ = ∆ ∆

() ()1

. 0, else if then

 {

t t

kl klz z

−∂ ∂
<

∂ ∂

! !

() ()()
()

1

minmax .a ,

0

t t

kl kl
t

klz

− −∆ = ∆ ∆
∂

=
∂

!

()

()
()

()

()
()

()

1

' '
' '

exp .

exp .

 }

t

t t

kl kl

t kl

kl t

t t

kl kl
l kl

sign
z

sign
z

α

α

α

+

∂
− ∆

∂
=

∂
− ∆

∂

   
   
   
   
   
   

∑

!

!

 }
 }

4 Results and Discussion

In this section we present results comparing the convergence speed of our algorithms
against the standard gradient descent. We apply our proposed algorithms in a real
problem from molecular biology, training a model to predict the transmembrane re-
gions of β-barrel membrane proteins [16]. These proteins are localized on the outer
membrane of the gram-negative bacteria, and their transmembrane regions are formed
by antiparallel, amphipathic β-strands, as opposed to the α-helical membrane pro-

48 Pantelis G. Bagos, Theodore D. Liakopoulos, and Stavros J. Hamodrakas

teins, found in the bacterial inner membrane, and in the cell membrane of eukaryotes,
that have their membrane spanning regions formed by hydrophobic α-helices [17].

The topology prediction of β-barrel membrane proteins, i.e. predicting precisely
the amino-acid segments that span the lipid bilayer, is one of the hard problems in
current bioinformatics research [16]. The model that we used is cyclic with 61 states
with some of them sharing the same emission probabilities (hence named tied states).
The full details of the model are presented in [18]. We have to note, that similar
HMMs, are found to be the best available predictors for α-helical membrane protein
topology [19], and this particular method, currently performs better for β-barrel
membrane protein topology prediction, outperforming significantly, two other Neural
Network-based methods [20]. For training, we used 16 non-homologous outer mem-
brane proteins with structures known at atomic resolution, deposited at the Protein
Data Bank (PDB) [21]. The sequences x, are the amino-acid sequences found in PDB,
whereas the labels y required for the training phase, were deduced by the three di-
mensional structures. We use one label for the amino-acids occurring in the mem-
brane-spanning regions (TM), a second for those in the periplasmic space (IN) and a
third for those in the extracellular space (OUT). In the prediction phase, the input is
only the sequence x, and the model predicts the most probable path of states with the
corresponding labeling y, using the Viterbi algorithm [1, 2].

For standard gradient descent we use learning rates (η), ranging from 0.001 to 0.1
for both emission and transition probabilities, whereas the same values were used for
the initial parameters η0 (in algorithm 1) and ∆0 (in algorithm 2), for every parameter
of the model. For the two algorithms that we proposed, we additionally used a+=1.2
and a-=0.5, for increasing and decreasing factors, as originally proposed for the
RPROP algorithm, even though the algorithms are not sensitive to these parameters.
Finally, for setting the minimum and maximum allowed learning rates we used ηmin

(algorithm 1) and ∆min (algorithm 2) equal to 10-20 and ηmax (algorithm 1) and ∆max

(algorithm 2) equal to 10.
The results are summarized in Table 1. It is obvious that both of our algorithms

perform significantly better than standard gradient descent. The training procedure
with the 2 newly proposed algorithms is more robust, since even choosing a very
small or a very large initial value for the learning rate, the algorithm eventually con-
verges to the same value of negative log-likelihood. This is not the case for standard
gradient descent, since a small learning rate (η = 0.001) will cause the algorithm to
converge extremely slowly (negative log-likelihood equal to 391.5 at 250 iterations)
or even get trapped in local maxima of the likelihood, while at the same time a large
value will cause the algorithm to diverge (for η > 0.03). In real life applications, one
has to conduct an extensive search in the parameter space in order to find the optimal
problem-specific learning rate. It is interesting to note, that no matter the initial values
of the learning rates we used, after 50 iterations, our 2 algorithms, converge to ap-
proximately the same negative log-likelihood, which is in any case better compared to
that obtained by standard gradient descent. Furthermore, we should mention that
Algorithm 1 diverged only for ηkl = 0.1, whereas Algorithm 2 did not diverge in the

range of the initial parameters we used.

Faster Gradient Descent Training of Hidden Markov Models 49

Table 1. Evolution of negative log-likelihoods for algorithm 1, algorithm 2 and standard gradi-
ent descent, using different initial values for the learning rate, #: negative log-likelihood greater
than 10000, meaning that the algorithm diverged

Iterations

 50 100 150 200 250
η

0.001 459.7871 424.3475 408.3465 398.4966 391.5139
0.005 391.7835 372.7111 363.2065 357.1393 352.8225
0.010 372.8962 357.1751 349.5669 344.9322 341.8101
0.020 357.1228 344.7693 342.7547 337.6631 335.6162
0.030 353.7927 342.4032 338.8682 337.3911 336.5716
0.040 # # # # #
0.050 # # # # #

St
an

da
rd

 G
ra

di
en

t
D

es
ce

nt

0.100 # # # # #
ηkl

0.001 331.0293 328.6714 327.4731 326.1206 325.3529
0.005 330.0261 328.4753 327.2319 326.0366 325.3092
0.010 329.9236 328.4093 327.4881 326.5018 325.7104
0.020 329.6344 328.3149 327.1772 326.0632 325.1964
0.030 329.5086 328.1867 326.8927 325.7983 325.1218
0.040 330.2231 328.7799 327.7404 326.7106 325.6933
0.050 475.0815 332.7297 328.3895 327.6025 327.0391

A
lg

or
it

hm
 1

0.100 # # # # #
∆kl

0.001 330.1204 328.2821 327.3199 326.6095 325.9399
0.005 329.4728 327.8869 327.0973 326.3861 325.8135
0.010 329.5845 327.9141 326.8738 325.9267 325.4198
0.020 329.2549 327.8328 327.0722 326.4339 325.8361
0.030 329.0184 327.6231 326.8671 326.1906 325.5751
0.040 329.1602 327.7389 327.0219 326.2906 325.7256
0.050 329.0520 327.7299 326.9171 326.1581 325.5698

A
lg

or
it

hm
 2

0.100 328.7986 327.4951 326.6774 325.9476 325.5050

On the other hand, the 2 newly proposed algorithms are much faster than standard

gradient descent. From Table 1 and Figure 1, we observe that standard gradient de-
scent, even when an optimal learning rate has been chosen (η = 0.02), requires as
much as five times the number of iterations in order to reach the appropriate log-
likelihood. We should mention here, that in real life applications, we would have
chosen a threshold for the difference in the log-likelihood, between two consecutive
iterations (for example 0.01). In such cases the training procedure would have been
stopped much earlier, using the two proposed algorithms, than with the standard gra-
dient descent.

We should note here, that the observed differences in the values of negative log-
likelihood correspond also to better predictive performance of the model. By the use
of our two proposed algorithms the correlation coefficient for the correctly predicted
residues, in a two state mode (transmembrane vs. non-transmembrane), ranges be-
tween 0.848-0.851, whereas for standard gradient descent ranges between 0.819-
0.846. Similarly, the fraction of the correctly predicted residues in a two state mode
ranges between 0.899-0.901, while at the same time the standard gradient descent

50 Pantelis G. Bagos, Theodore D. Liakopoulos, and Stavros J. Hamodrakas

yields a prediction in the range of 0.871-0.885. In all cases these measures were com-
puted without counting the cases of divergence, where no useful model could be
trained. Obviously, the two algorithms perform consistently better, irrespective of the
initial values of the parameters.

If we used different learning rates for the emission and transition probabilities, we
would probably perform a more reliable training for standard gradient descent. Unfor-
tunately, this would result in having to optimize simultaneously two parameters,
which it would turn out to require more trials for finding optimal values for each one.
Our two proposed algorithms on the other hand, do not depend that much on the ini-
tial values, and thus this problem is not present.

5 Conclusions

We have presented two simple, yet powerful modifications of the standard gradient
descent method for training Hidden Markov Models, with the CML criterion. The
approach was based on individually learning rate adaptation, which have been proved
useful for speeding up the convergence of multi-layer perceptrons, but up to date no
such kind of study have been performed on HMMs. The results obtained from this
study are encouraging; our proposed algorithms not only outperform, as one would
expect, the standard gradient descent in terms of training speed, but also provide a
much more robust training procedure. Furthermore, in all cases the predictive per-
formance is better, as judged from the measures of the per-residue accuracy men-
tioned earlier. In conclusion, the two algorithms presented here, converge much faster

Fig. 1. Evolution of the negative log-likelihoods obtained using the three algorithms, with the
same initial values for the learning rate (0.02). This learning rate was found to be the optimal
for standard gradient descent. Note that after 50 iterations the lines for the two proposed algo-
rithms are practically indistinguishable, and also that convergence is achieved much faster,
compared to standard gradient descent

Faster Gradient Descent Training of Hidden Markov Models 51

to the same value of the negative log-likelihood, and produce better results. Thus, it is
clear that they are superior compared to standard gradient descent. Since the required
parameter tuning is minimal, without increasing the computational complexity or the
memory requirements, our algorithms constitute a potential replacement for the stan-
dard gradient descent for CML training.

References

1. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech rec-
ognition. Proc IEEE. 77(2) (1989) 257-286

2. Durbin, R., Eddy, S., Krogh, A., Mithison, G.: Biological sequence analysis, probabilistic
models of proteins and nucleic acids. Cambridge University Press (1998)

3. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting transmembrane pro-
tein topology with a hidden Markov model, application to complete genomes. J. Mol. Biol.
305(3) (2001) 567-80

4. Henderson, J., Salzberg, S., Fasman, K.H.: Finding genes in DNA with a hidden Markov
model. J. Comput. Biol. 4(2) (1997) 127-142

5. Krogh, A., Mian, I.S., Haussler, D.: A hidden Markov model that finds genes in E. coli
DNA. Nucleic Acids Res. 22(22) (1994) 4768-78

6. Baum, L.: An inequality and associated maximization technique in statistical estimation for
probalistic functions of Markov processes. Inequalities. 3 (1972) 1-8

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm. J. Royal Stat. Soc. B. 39 (1977) 1-38

8. Baldi, P., Chauvin, Y.: Smooth On-Line Learning Algorithms for Hidden Markov Models.
Neural Comput. 6(2) (1994) 305-316

9. Krogh, A.: Hidden Markov models for labeled sequences, Proceedings of the12th IAPR
International Conference on Pattern Recognition (1994) 140-144

10. Krogh, A.: Two methods for improving performance of an HMM and their application for
gene finding. Proc Int Conf Intell Syst Mol Biol. 5 (1997) 179-86

11. Bagos, P.G., Liakopoulos, T.D., Hamodrakas, S.J.: Maximum Likelihood and Conditional
Maximum Likelihood learning algorithms for Hidden Markov Models with labeled data-
Application to transmembrane protein topology prediction. In Simos, T.E. (ed): Computa-
tional Methods in Sciences and Engineering, Proceedings of the International Conference
2003 (ICCMSE 2003), World Scientific Publishing Co. Pte. Ltd. Singapore (2003) 47-55

12. Krogh, A., Riis, S.K.: Hidden neural networks. Neural Comput. 11(2) (1999) 541-63
13. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1998)
14. Schiffmann, W., Joost, M., Werner, R.: Optimization of the Backpropagation Algorithm

for Training Multi-Layer Perceptrons. Technical report (1994) University of Koblenz, In-
stitute of Physics.

15. Riedmiller, M., Braun, H.: RPROP-A Fast Adaptive Learning Algorithm, Proceedings of
the 1992 International Symposium on Computer and Information Sciences, Antalya, Tur-
key, (1992) 279-285

16. Schulz, G.E.: The structure of bacterial outer membrane proteins, Biochim. Biophys. Acta.,
1565(2) (2002) 308-17

17. Von Heijne, G.: Recent advances in the understanding of membrane protein assembly and
function. Quart. Rev. Biophys., 32(4) (1999) 285-307

52 Pantelis G. Bagos, Theodore D. Liakopoulos, and Stavros J. Hamodrakas

18. Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., Hamodrakas, S.J.: A Hidden Markov
Model capable of predicting and discriminating β-barrel outer membrane proteins. BMC
Bioinformatics 5:29 (2004)

19. Moller S., Croning M.D., Apweiler R.: Evaluation of methods for the prediction of mem-
brane spanning regions. Bioinformatics, 17(7) (2001) 646-53

20. Bagos, P.G., Liakopoulos, T.D., Spyropoulos, I.C., Hamodrakas, S.J.: PRED-TMBB: a
web server for predicting the topology of beta-barrel outer membrane proteins.
Nucleic Acids Res. 32(Web Server Issue) (2004) W400-W404

21. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng,
Z., Gilliland, G.L., Iype, L., Jain, S., et al: The Protein Data Bank. Acta Crystallogr. D
Biol. Crystallogr., 58(Pt 6 No 1) (2002) 899-907

	1 Introduction
	2 Hidden Markov Models
	2.1 Maximum Likelihood and Conditional Maximum Likelihood
	2.2 Gradient Descent Optimization

	3 Individual Learning Rate Adaptation
	4 Results and Discussion
	5 Conclusions
	References

