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Abstract. Hidden Markov Models (HMMs) are probabilistic models, suitable 
for a wide range of pattern recognition tasks. In this work, we propose a new 
gradient descent method for Conditional Maximum Likelihood (CML) training 
of HMMs, which significantly outperforms traditional gradient descent. Instead 
of using fixed learning rate for every adjustable parameter of the HMM, we 
propose the use of independent learning rate/step-size adaptation, which has 
been proved valuable as a strategy in Artificial Neural Networks training. We 
show here that our approach compared to standard gradient descent performs 
significantly better. The convergence speed is increased up to five times, while 
at the same time the training procedure becomes more robust, as tested on ap-
plications from molecular biology. This is accomplished without additional 
computational complexity or the need for parameter tuning. 

1   Introduction 

Hidden Markov Models (HMMs) are probabilistic models suitable for a wide range 
of pattern recognition applications. Initially developed for speech recognition [1], 
during the last few years they became very popular in molecular biology for protein 
modeling [2,3] and gene finding [4,5]. 

Traditionally, the parameters of an HMM (emission and transition probabilities) 
are optimized according to the Maximum Likelihood (ML) criterion. A widely used 
algorithm for this task is the efficient Baum-Welch algorithm [6], which is in fact an 
Expectation-Maximization (EM) algorithm [7], guaranteed to converge to at least a 
local maximum of the likelihood. Baldi and Chauvin later proposed a gradient de-
scent method capable of the same task, which offers a number of advantages over the 
Baum-Welch algorithm, including smoothness and on-line training abilities [8]. 

When training an HMM using labeled sequences [9], we can either choose to train 
the model according to the ML criterion, or to perform Conditional Maximum Likeli-
hood (CML) training which is shown to perform better in several applications [10]. 
ML training could be performed (after some trivial modifications) with the use of 
standard techniques such as the Baum-Welch algorithm or gradient descent, whereas 
for CML training one should rely solely on gradient descent methods. 

The main advantage of the Baum-Welch algorithm (and hence the ML training) is 
due to its simplicity and the fact that requires no parameter tuning. Furthermore com-
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pared to standard gradient descent, even for ML training, the Baum-Welch algorithm 
achieves significantly faster convergence rates [11]. On the other hand gradient de-
scent (especially in the case of large models) requires careful search in the parameter 
space for an appropriate learning rate in order to achieve the best possible perform-
ance. 

In the present work, we extend the gradient descent approach for CML training of 
HMMs. We then, adopting ideas from the literature regarding training techniques 
applied on feed-forward back-propagated multilayer perceptrons, introduce a new 
scheme for gradient descent optimization for HMMs. We propose the use of inde-
pendent learning rate/step-size adaptation for every trainable parameter of the HMM 
(emission and transition probabilities), and we show that not only outperforms sig-
nificantly the convergence rate of the standard gradient descent, but also leads to a 
much more robust training procedure whereas at the same time it is equally simple 
enough, since it requires almost no parameter tuning. 

In the following sections we will first establish the appropriate notation for de-
scribing a Hidden Markov Model with labeled sequences, following mainly the nota-
tion used in [2] and [12]. We will then briefly describe the algorithms for parameter 
estimation with ML and CML training and afterwards we will introduce our proposal, 
of individual learning rate adaptation as a faster and simpler alternative to standard 
gradient descent. Eventually, we will show the superiority of our approach on a real 
life application from computational molecular biology, training a model for the pre-
diction of the transmembrane segments of β-barrel outer membrane proteins. 

2   Hidden Markov Models 

A Hidden Markov Model is composed of a set of (hidden) states, a set of observable 
symbols and a set of transition and emission probabilities. Two states k, l are con-
nected by means of the transition probabilities αkl, forming a 1st order Markovian 

process. Assuming a protein sequence x of length L denoted as: 

1 2, , ...,x Lx x x=  (1) 

where the xi’s are the 20 amino acids, we usually denote the “path” (i.e. the sequence 

of states) ending up to a particular position of the amino acid sequence (the sequence 
of symbols), by π. Each state k is associated with an emission probability ek(xi), 

which is the probability of a particular symbol xi to be emitted by that state. When 

using labeled sequences, each amino acid sequence x is accompanied by a sequence 
of labels y for each position i in the sequence:  

1 2, , ...,y Ly y y=  (2) 

Consequently, one has to declare a new probability distribution, in addition to the 
transition and emission probabilities, the probability ∆k(c) of a state k having a label 

c. In almost all biological applications this probability is just a delta-function, since a 
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particular state is not allowed to match more than one label. The total probability of a 
sequence x given a model is calculated by summing over all possible paths: 

This quantity is calculated using a dynamic programming algorithm known as the 
forward algorithm, or alternatively by the similar backward algorithm [1]. In [9] 
Krogh proposed a simple modified version of the forward and backward algorithms, 
incorporating the concept of labeled data. Thus we can also use, the joint probability 
of the sequence x and the labeling y given the model: 

( ) ( ) ( )
1 10

1

| , | | ( )x, y x y, x,
i i

y y

i i
i

P P P a e x aπ π π π
π π π

θ π θ π θ
+

∈Π ∈Π =

= = =∑ ∑ ∑ ∏  (4) 

The idea behind this approach is that summation has to be done only over those 
paths Πy that are in agreement with the labels y. If multiple sequences are available 

for training (which is usually the case), they are assumed independent, and the total 
likelihood of the model is just a product of probabilities of the form (3) and (4) for 
each of the sequences. The generalization of Equations (3) and (4) from one to many 
sequences is therefore trivial, and we will consider only one training sequence x in 
the following. 

2.1   Maximum Likelihood and Conditional Maximum Likelihood 

The Maximum Likelihood (ML) estimate for any arbitrary model parameter, is de-
noted by: 

( )arg max |xML P
θ

θ θ=  (5) 

The dominant algorithm for ML training is the elegant Baum-Welch algorithm [6]. 
It is a special case of the Expectation-Maximization (EM) algorithm [7], proposed for 
Maximum Likelihood (ML) estimation for incomplete data. The algorithm, updates 
iteratively the model parameters (emission and transition probabilities), using their 
expectations, computed with the use of forward and backward algorithms. Conver-
gence to at least a local maximum of the likelihood is guaranteed, and since it re-
quires no initial parameters, the algorithm needs no parameter tuning. It has been 
shown, that maximizing the likelihood with the Baum-Welch algorithm can be done 
equivalently with a gradient descent method [8]. It should be mentioned here, as it is 
apparent from the above equations where the summation is performed over the entire 
training set, that we consider only batch (off-line) mode of training. Gradient descent 
could also be performed on on-line mode, but we will not consider this option in this 
work since the collection of heuristics we present are especially developed for batch 
mode of training.  
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In the CML approach (which is usually referred to as discriminative training) the 
goal is to maximize the probability of correct labeling, instead of the probability of 
the sequences [9, 10, 12]. This is formulated as: 

( ) ( )
( )
, |

arg max | , arg max
|

x y
y x

x
CML P

P
Pθ θ

θ
θ θ

θ
= =  (6) 

When turning to negative log-likelihoods this is equivalent to minimizing the 
difference between the logarithms of the quantities in Equations (4) and (3). Thus the 
log-likelihood can be expressed as the difference between the log-likelihood in the 
clamped phase and that of the free-running phase [9] 

( )log | ,y x c fP θ= − = −! ! !  (7) 

where  

( )log |x,yc P θ= −!  (8) 

( )log |xf P θ= −!  (9) 

The maximization procedure cannot be performed with the Baum-Welch algorithm 
[9, 10] and a gradient descent method is more appropriate. The gradients of the log-
likelihood, w.r.t. the transition and emission probabilities according to [12] are:  

c f
fc kl kl

kl kl kl kl

A A

a a a a

∂∂ −∂
= − = −

∂ ∂ ∂

!!!
 (10) 

( ) ( ) ( )
( ) ( )

( )

c f
fc k k

k k k k

E b E b

e b e b e b e b

∂∂ −∂
= − = −

∂ ∂ ∂

!!!
 (11) 

The superscripts c and f in the above expectations correspond to the clamped and 
free-running phase discussed earlier. The expectations A, E, are computed as de-
scribed in [12], using the forward and backward algorithms [1, 2]. 

2.2   Gradient Descent Optimization  

By calculating the derivatives of the log-likelihood with respect to a generic parame-
ter θ of the model, we proceed with gradient-descent and iteratively update these 
parameters according to: 
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where η is the learning rate. Since the model parameters are probabilities, performing 
gradient descent optimization would most probably lead to negative estimates [8]. To 
avoid the risk of obtaining negative estimates, we have to use a proper parameter 
transformation, namely the normalization of the estimates in the range [0,1] and per-
form gradient-descent optimization on the new variables [8,12]. For example, for the 
transition probabilities, we obtain: 
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Now, doing gradient descent on z’s, 
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yields the following update formula for the transitions: 
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The gradients with respect to the new variables zkl can be expressed entirely in 

terms of the expected counts and the transition probabilities at the previous iteration. 
Similar results could be obtained for the emission probabilities. Thus, when we train 
the model according to the CML criterion the derivatives of the log-likelihood w.r.t. a 
transition probability is: 
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kl kl kl kl kl
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Substituting now Equation (16) into Equation (15), we get an expression entirely 
in terms of the model parameters and their expectations. 
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The last equation describes the update formula for the transitions probabilities ac-
cording to CML training with standard gradient descent [12]. The main disadvantage 
of gradient descent optimization is that it can be very slow [11]. In the following 
section we introduce our proposal for a faster version of gradient descent optimiza-
tion, using information included only in the first derivative of the likelihood function. 
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These kinds of techniques have been proved very successful in speeding up the con-
vergence rate of back-propagation in multi-layer perceptrons, and at the same time 
they are also improving the stability during training. However, even though they are a 
natural extension to the gradient descent optimization of HMMs, to our knowledge no 
such effort has been done in the past. 

3   Individual Learning Rate Adaptation  

One of the greatest problems in training large models (HMMs or ANNs) with gradi-
ent descent is to find an optimal learning rate [13]. A small learning rate will slow 
down the convergence speed. On the other hand, a large learning rate will probably 
cause oscillations during training, finally leading to divergence and no useful model 
would be trained. A few ways of escaping this problem have been proposed in the 
literature of the machine learning community [14]. One option is to use some kind of 
adaptation rule, for adapting the learning rate during training. This could be done for 
instance starting with a large learning rate and decrease it by a small amount at each 
iteration, forcing it though to be the same for every model parameter, or alternatively 
to adapt it individually for every parameter of the model, relying on information in-
cluded in the first derivative of the likelihood function [14]. Another approach is to 
turn on second order methods, using information of the second derivative. Here we 
consider only methods relying on the first derivative, and we developed two algo-
rithms that use individual learning rate adaptation that are presented below. 

The first, denoted as Algorithm 1, alters the learning rate according to the sign of 
the two last partial derivatives of the likelihood w.r.t. a specific model parameter. 
Since we are working with transformed variables, the partial derivative, which we 
consider, is that of the new variable. For example, speaking for transition probabili-
ties we will use the partial derivative of the likelihood w.r.t. the zkl and not w.r.t. the 

original αkl. If the partial derivative possesses the same sign for two consecutive 

steps, the learning rate is increased (multiplied by a factor of a+ >1), whereas if the 
derivative changes sign, the learning rate is decreased (multiplied by a factor of a- 

<1). In the second case, we set the partial derivative equal to zero and thus prevent an 
update of the model parameter. This ensures that in the next iteration the parameter is 
modified according to the reduced learning rate, using though the actual gradient. We 
chose to have the learning rates bound by some minimum and maximum values de-
noted by the parameters ηmin and ηmax. In the following section Algorithm 1 is pre-

sented, for updating the transition probabilities. It is completely straightforward to 
derive the appropriate expressions for the emission probabilities as well. In the fol-
lowing, the sign operator of an argument returns 1 if the argument is positive, -1 if it 
is negative and 0 otherwise, whereas min and max operators are the usual minimum 
and maximum of two arguments. 

The second algorithm denoted Algorithm 2, constitutes a more radical approach 
and is based on a modified version of the RPROP algorithm [15]. The RPROP algo-
rithm is perhaps the fastest first-order learning algorithm for multi-layer perceptrons, 
and it is designed specifically to eliminate the harmful influence of the size of the 
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partial derivative, on the weight step-size [14, 15]. Algorithm 2 is almost identical to 
the one discussed above, with the only difference being the fact that the step-size (the 
amount of change of a model parameter) at each iteration is independent of the mag-
nitude of the partial derivative. Thus, instead of modifying the learning rate and mul-
tiplying it by the partial derivative, we chose to modify directly an initial step-size for 
every model parameter denoted by ∆, and then use only the sign of the partial deriva-
tive to determine the direction of the change. Algorithm 2 is presented below. Once 
again we need the increasing and decreasing factors a+ and a- and the minimum and 
maximum values for the step-size, now denoted by ∆min and ∆max respectively. 

Algorithm 1 
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It should be mentioned that the computational complexity and memory require-

ments of the two proposed algorithms is similar to standard gradient descent for CML 
training. The algorithms need to store only two additional matrices with dimensions 
equal to the total number of the model parameters, the matrix with the partial deriva-
tives at the previous iteration and the matrix containing the individual learning rates 
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(or step-sizes) for every model parameter. In addition, a few additional operations are 
required per iteration compared to standard gradient descent. In HMMs the main 
computational bottleneck is the computation of the expected counts, requiring run-
ning the forward and backward algorithms. Thus, the few additional operations and 
memory requirements introduced here are practically negligible. 

Algorithm 2 
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4   Results and Discussion 

In this section we present results comparing the convergence speed of our algorithms 
against the standard gradient descent. We apply our proposed algorithms in a real 
problem from molecular biology, training a model to predict the transmembrane re-
gions of β-barrel membrane proteins [16]. These proteins are localized on the outer 
membrane of the gram-negative bacteria, and their transmembrane regions are formed 
by antiparallel, amphipathic β-strands, as opposed to the α-helical membrane pro-
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teins, found in the bacterial inner membrane, and in the cell membrane of eukaryotes, 
that have their membrane spanning regions formed by hydrophobic α-helices [17]. 

The topology prediction of β-barrel membrane proteins, i.e. predicting precisely 
the amino-acid segments that span the lipid bilayer, is one of the hard problems in 
current bioinformatics research [16]. The model that we used is cyclic with 61 states 
with some of them sharing the same emission probabilities (hence named tied states). 
The full details of the model are presented in [18]. We have to note, that similar 
HMMs, are found to be the best available predictors for α-helical membrane protein 
topology [19], and this particular method, currently performs better for β-barrel 
membrane protein topology prediction, outperforming significantly, two other Neural 
Network-based methods [20]. For training, we used 16 non-homologous outer mem-
brane proteins with structures known at atomic resolution, deposited at the Protein 
Data Bank (PDB) [21]. The sequences x, are the amino-acid sequences found in PDB, 
whereas the labels y required for the training phase, were deduced by the three di-
mensional structures. We use one label for the amino-acids occurring in the mem-
brane-spanning regions (TM), a second for those in the periplasmic space (IN) and a 
third for those in the extracellular space (OUT). In the prediction phase, the input is 
only the sequence x, and the model predicts the most probable path of states with the 
corresponding labeling y, using the Viterbi algorithm [1, 2]. 

For standard gradient descent we use learning rates (η), ranging from 0.001 to 0.1 
for both emission and transition probabilities, whereas the same values were used for 
the initial parameters η0 (in algorithm 1) and ∆0 (in algorithm 2), for every parameter 
of the model. For the two algorithms that we proposed, we additionally used a+=1.2 
and a-=0.5, for increasing and decreasing factors, as originally proposed for the 
RPROP algorithm, even though the algorithms are not sensitive to these parameters. 
Finally, for setting the minimum and maximum allowed learning rates we used ηmin 

(algorithm 1) and ∆min (algorithm 2) equal to 10-20 and ηmax (algorithm 1) and ∆max 

(algorithm 2) equal to 10.  
The results are summarized in Table 1. It is obvious that both of our algorithms 

perform significantly better than standard gradient descent. The training procedure 
with the 2 newly proposed algorithms is more robust, since even choosing a very 
small or a very large initial value for the learning rate, the algorithm eventually con-
verges to the same value of negative log-likelihood. This is not the case for standard 
gradient descent, since a small learning rate (η = 0.001) will cause the algorithm to 
converge extremely slowly (negative log-likelihood equal to 391.5 at 250 iterations) 
or even get trapped in local maxima of the likelihood, while at the same time a large 
value will cause the algorithm to diverge (for η > 0.03). In real life applications, one 
has to conduct an extensive search in the parameter space in order to find the optimal 
problem-specific learning rate. It is interesting to note, that no matter the initial values 
of the learning rates we used, after 50 iterations, our 2 algorithms, converge to ap-
proximately the same negative log-likelihood, which is in any case better compared to 
that obtained by standard gradient descent. Furthermore, we should mention that 
Algorithm 1 diverged only for ηkl = 0.1, whereas Algorithm 2 did not diverge in the 

range of the initial parameters we used. 
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Table 1. Evolution of negative log-likelihoods for algorithm 1, algorithm 2 and standard gradi-
ent descent, using different initial values for the learning rate, #: negative log-likelihood greater 
than 10000, meaning that the algorithm diverged 

Iterations 

 50 100 150 200 250 
η      

0.001 459.7871 424.3475 408.3465 398.4966 391.5139 
0.005 391.7835 372.7111 363.2065 357.1393 352.8225 
0.010 372.8962 357.1751 349.5669 344.9322 341.8101 
0.020 357.1228 344.7693 342.7547 337.6631 335.6162 
0.030 353.7927 342.4032 338.8682 337.3911 336.5716 
0.040 # # # # # 
0.050 # # # # # 

St
an

da
rd

 G
ra

di
en

t 
D

es
ce

nt
 

0.100 # # # # # 
ηkl      

0.001 331.0293 328.6714 327.4731 326.1206 325.3529 
0.005 330.0261 328.4753 327.2319 326.0366 325.3092 
0.010 329.9236 328.4093 327.4881 326.5018 325.7104 
0.020 329.6344 328.3149 327.1772 326.0632 325.1964 
0.030 329.5086 328.1867 326.8927 325.7983 325.1218 
0.040 330.2231 328.7799 327.7404 326.7106 325.6933 
0.050 475.0815 332.7297 328.3895 327.6025 327.0391 

A
lg

or
it

hm
 1

 

0.100 # # # # # 
∆kl      

0.001 330.1204 328.2821 327.3199 326.6095 325.9399 
0.005 329.4728 327.8869 327.0973 326.3861 325.8135 
0.010 329.5845 327.9141 326.8738 325.9267 325.4198 
0.020 329.2549 327.8328 327.0722 326.4339 325.8361 
0.030 329.0184 327.6231 326.8671 326.1906 325.5751 
0.040 329.1602 327.7389 327.0219 326.2906 325.7256 
0.050 329.0520 327.7299 326.9171 326.1581 325.5698 

A
lg

or
it

hm
 2

 

0.100 328.7986 327.4951 326.6774 325.9476 325.5050 

 
On the other hand, the 2 newly proposed algorithms are much faster than standard 

gradient descent. From Table 1 and Figure 1, we observe that standard gradient de-
scent, even when an optimal learning rate has been chosen (η = 0.02), requires as 
much as five times the number of iterations in order to reach the appropriate log-
likelihood. We should mention here, that in real life applications, we would have 
chosen a threshold for the difference in the log-likelihood, between two consecutive 
iterations (for example 0.01). In such cases the training procedure would have been 
stopped much earlier, using the two proposed algorithms, than with the standard gra-
dient descent. 

We should note here, that the observed differences in the values of negative log-
likelihood correspond also to better predictive performance of the model. By the use 
of our two proposed algorithms the correlation coefficient for the correctly predicted 
residues, in a two state mode (transmembrane vs. non-transmembrane), ranges be-
tween 0.848-0.851, whereas for standard gradient descent ranges between 0.819-
0.846. Similarly, the fraction of the correctly predicted residues in a two state mode 
ranges between 0.899-0.901, while at the same time the standard gradient descent 
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yields a prediction in the range of 0.871-0.885. In all cases these measures were com-
puted without counting the cases of divergence, where no useful model could be 
trained. Obviously, the two algorithms perform consistently better, irrespective of the 
initial values of the parameters. 

If we used different learning rates for the emission and transition probabilities, we 
would probably perform a more reliable training for standard gradient descent. Unfor-
tunately, this would result in having to optimize simultaneously two parameters, 
which it would turn out to require more trials for finding optimal values for each one. 
Our two proposed algorithms on the other hand, do not depend that much on the ini-
tial values, and thus this problem is not present.  

5   Conclusions 

We have presented two simple, yet powerful modifications of the standard gradient 
descent method for training Hidden Markov Models, with the CML criterion. The 
approach was based on individually learning rate adaptation, which have been proved 
useful for speeding up the convergence of multi-layer perceptrons, but up to date no 
such kind of study have been performed on HMMs. The results obtained from this 
study are encouraging; our proposed algorithms not only outperform, as one would 
expect, the standard gradient descent in terms of training speed, but also provide a 
much more robust training procedure. Furthermore, in all cases the predictive per-
formance is better, as judged from the measures of the per-residue accuracy men-
tioned earlier. In conclusion, the two algorithms presented here, converge much faster 

 

Fig. 1. Evolution of the negative log-likelihoods obtained using the three algorithms, with the 
same initial values for the learning rate (0.02). This learning rate was found to be the optimal 
for standard gradient descent. Note that after 50 iterations the lines for the two proposed algo-
rithms are practically indistinguishable, and also that convergence is achieved much faster, 
compared to standard gradient descent 
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to the same value of the negative log-likelihood, and produce better results. Thus, it is 
clear that they are superior compared to standard gradient descent. Since the required 
parameter tuning is minimal, without increasing the computational complexity or the 
memory requirements, our algorithms constitute a potential replacement for the stan-
dard gradient descent for CML training. 
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